2025届上海市松江区九上数学开学联考模拟试题【含答案】
展开这是一份2025届上海市松江区九上数学开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各点在反比例函数图象上的是( )
A.B.C.D.
2、(4分)为了了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析。在这个问题中,样本是指( )
A.150B.被抽取的150名考生
C.我市2019年中考数学成绩D.被抽取的150名考生的中考数学成绩
3、(4分)直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( )
A.B.C.D.
4、(4分)下列关于矩形对角线的说法中,正确的是
A.对角线相互垂直B.面积等于对角线乘积的一半
C.对角线平分一组对角D.对角线相等
5、(4分)如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为( )
A.1B.2C.3D.4
6、(4分)如图,点为菱形边上的一个动点,并沿→→→的路径移动,设点E经过的路径长为,的面积为,则下列图象能大致反映与的函数关系的是( )
A.B.
C.D.
7、(4分)若,则下列不等式不成立的是( )
A.B.C.D.
8、(4分)某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:
下列说法正确的是( )
A.这10名同学的体育成绩的众数为50
B.这10名同学的体育成绩的中位数为48
C.这10名同学的体育成绩的方差为50
D.这10名同学的体育成绩的平均数为48
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)m,n分别是的整数部分和小数部分,则2m-n=______.
10、(4分)一次函数的图象如图所示,当时,的取值范围是_______.
11、(4分)已知一次函数的图像如图所示,当x< 2时,y的取值范围是________.
12、(4分)已知m是一元二次方程的一个根 , 则代数式的值是_____
13、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:,并在数轴上表示出它的解集.
15、(8分)如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,矩形OABC沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
(1)求直线OB的解析式及线段OE的长;
(2)求直线BD的解析式及点E的坐标;
(3)若点P是平面内任意一点,点M是直线BD上的一个动点,过点M作轴,垂足为点N,在点M的运动过程中是否存在以P、N、E、O为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.
16、(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.
(1)求证:△BCF≌△BA1D.
(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.
17、(10分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)连接BF,求证:CF=EF.
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.
18、(10分)如图,在□ABCD中,点E,F分别在边AB,DC上,且AE=CF,连接DE,BF.
求证:DE=BF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.
20、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
21、(4分)若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________
22、(4分)已知:在△ABC中,AC=a,AB与BC所在直线成45°角,AC与BC所在直线形成的夹角的余弦值为(即csC=),则AC边上的中线长是_____________.
23、(4分)一次函数的图象与轴交于点________;与轴交于点______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解方程:+=1.
25、(10分)毎年6月,学校门口的文具店都会购进毕业季畅销商品进行销售.已知校门口“小光文具店“在5月份就售出每本8元的A种品牌同学录90本,每本10元的B种品牌同学录175本.
(1)某班班长帮班上同学代买A种品牌和B种品牌同学录共27本,共花费246元,请问班长代买A种品牌和B种品牌同学录各多少本?
(2)该文具店在6月份决定将A种品牌同学录每本降价3元后销售,B种品牌同学录每本降价a%(a>0)后销售.于是,6月份该文具店A种品牌同学录的销量比5月份多了a%,B种品牌同学录的销量比5月份多了(a+20)%,且6月份A、B两种品牌的同学录的销售总额达到了2550元,求a的值.
26、(12分)如图,已知:EG∥AD,∠1=∠G,试说明 AD平分∠BAC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由可得,xy=-5,然后进行排除即可.
【详解】
解:由,即,xy=-5,经排查只有C符合;
故答案为C.
本题考查了反比例函数的性质,即对于反比例函数,有xy=k是解答本题的关键.
2、D
【解析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
样本是抽取150名考生的中考数学成绩,
故选:D.
此题考查总体、个体、样本、样本容量,难度不大
3、C
【解析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.
【详解】
设直角三角形的两条直角边分别为x、y,
斜边上的中线为d,
斜边长为2d,
由勾股定理得,,
直角三角形的面积为S,
,
则,
则,
,
这个三角形周长为:,
故选C.
【点睛】本题考查了勾股定理的应用,解题的关键是根据直角三角形的两条直角边长分别是a,b,斜边长为c,得出.
4、D
【解析】
根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.
【详解】
解:矩形的对角线相等,
故选:.
此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.
5、A
【解析】
根据图形可得:线段BE的长度即是平移的距离,
又BC=3,EC=2,
∴BE=3−2=1.
故选A.
6、D
【解析】
分段来考虑:点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小,据此选择即可.
【详解】
点E沿A→B运动,△ADE的面积逐渐变大,设菱形的边长为a,∠A=β,
∴AE边上的高为ABsinβ=a•sinβ,
∴y=x•a•sinβ,
点E沿B→C移动,△ADE的面积不变;
点E沿C→D的路径移动,△ADE的面积逐渐减小.
y=(3a-x)•sinβ,
故选D.
本题主要考查了动点问题的函数图象.注意分段考虑.
7、C
【解析】
直接根据不等式的性质进行分析判断即可得到答案.
【详解】
A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;
B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;
C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;
D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.
故选C.
本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;
不等式两边同乘以(或除以)同一个负数,不等号的方向改变.
8、A
【解析】
结合表格根据众数、平均数、中位数的概念求解即可.
【详解】
解:1 0名学生的体育成绩中50分出现的次数最多,众数为50;
第5和第6名同学的成绩的平均值为中位数,
中位数为49;
平均数为48.6,
方差为[(46-48.6)2+2×(47-48.6)2+(48-48.6)2+2×(49-48.6)2+4×(50-48.6)2]≠50;
∴选项A正确,B、C、D错误
故选:A
本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先估算出的大致范围,然后可求得-1的整数部分和小数部分,从而可得到m、n的值,最后代入计算即可.
【详解】
解:∵1<2<4,
∴1<<2,
∴0<-1<1.
∴m=0,n=-1.
∴2m-n=0-(-1)=1-.
故答案为:
本题主要考查的是估算无理数的大小,求得的大致范围是解题的关键.
10、
【解析】
根据函数图象与轴的交点坐标,观察图象在x轴上方的部分即可得.
【详解】
当y≥0时,观察图象就是直线y=kx+b在x轴上方的部分对应的x的范围(包含与x轴的交点),
∴x≤2,
故答案为:x≤2.
本题考查了一次函数与一元一次不等式的关系,合理运用数形结合思想是解题的关键.
11、y <1
【解析】试题解析∵一次函数y=kx+b(k≠1)与x轴的交点坐标为(2,1),且图象经过第一、三象限,
∴y随x的增大而增大,
∴当x<2时,y<1.
【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠1)的图象为直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为(-,1).
12、.
【解析】
把代入方程,得出关于的一元二次方程,再整体代入.
【详解】
当时,方程为,
即,
所以,.
故答案为:.
本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.
13、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、,见解析.
【解析】
分别求出不等式组中两个不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.
【详解】
解:
由(1)得
由(2)得
不等式组的解集为
在数轴上表示如图所示:
此题考查了解一元一次不等式组,以及数轴上表示不等式的解集,熟练掌握运算法则是解题的关键.
15、(1),OE=4;(2),;(3)存在,点M的坐标为或或或
【解析】
利用待定系数法求出k,再利用勾股定理求出OB,由折叠求出,即可得出结论;
利用勾股定理求出点D坐标,利用待定系数法求出直线BD的解析式,最后用三角形的面积公式求出点E的横坐标,即可得出结论;
分两种情况,利用菱形的性质求出点N坐标,进而得出点M的横坐标,代入直线BD解析式中,即可得出结论.
【详解】
解:设直线OB的解析式为,
将点代入中,得,
,
直线OB的解析式为,
四边形OABC是矩形,且,
,,
,,
根据勾股定理得,,
由折叠知,,
;
设,
,
由折叠知,,,
在中,,
根据勾股定理得,,
,
,
,,
设直线BD的解析式为 ,
,
∴6k`+5=8
∴K`=
直线BD的解析式为,
由知,直线OB的解析式为,
设点,
根据的面积得,,
,
;
由知,,
以P、N、E、O为顶点的四边形是菱形,
当OE是菱形的边时,,
或,
Ⅰ、当时,
轴,
点M的横坐标为4,
点M是直线BD:上,
,
Ⅱ、当时,
轴,
点M的横坐标为,
点M是直线BD:上,
,
当OE是菱形的对角线时,记对角线的交点为,,
由知,,
,
由知,直线OB的解析式为,
点过直线PN,
直线PN的解析式为,
令,
,
,
,
轴,
点M的横坐标为,
点M是直线BD:上,
,
当ON为对角线时,ON与EP互相平分,
点,
;
即:点M的坐标为或或或
此题是一次函数综合题,主要考查了矩形的性质,菱形的性质,待定系数法,三角形的面积公式,勾股定理,求出点D坐标是解本题的关键.
16、 (1)证明见解析(2)四边形A1BCE是菱形
【解析】
(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.
【详解】
(1)证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,
在△BCF与△BA1D中,
,
∴△BCF≌△BA1D;
(2)解:四边形A1BCE是菱形,
∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,
∴∠A1=∠A,
∵∠ADE=∠A1DB,
∴∠AED=∠A1BD=α,
∴∠DEC=180°﹣α,
∵∠C=α,
∴∠A1=α,
∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,
∴∠A1=∠C,∠A1BC=∠A1EC,
∴四边形A1BCE是平行四边形,
∴A1B=BC,
∴四边形A1BCE是菱形.
考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.
17、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质即可证得CF=EF;(2)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论;(3)连接BF,证明Rt△BCF≌Rt△BEF,根据全等三角形的性质可得CF=EF,由此即可证得结论.
【详解】
(1)证明:如图1,连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF;
(2)如图2,连接BF,
∵△ABC≌△DBE,
∴BC=BE, AC=DE,
∵∠ACB=∠DEB=90°,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AF+CF=AC=DE;
(3)如图3,连接BF,
∵△ABC≌△DBE,
∴BC=BE,AC=DE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,
在Rt△BCF和Rt△BEF中,
,
∴Rt△BCF≌Rt△BEF(HL),
∴CF=EF,
∵AC=DE,
∴AF=AC+FC=DE+EF.
本题考查了全等三角形的性质与判定,证明Rt△BCF≌Rt△BEF是解决问题的关键.
18、详见解析
【解析】
欲证明,只要证明≌即可.由四边形ABCD是平行四边形,
可证,,从而根据“SAS”可证明≌.
【详解】
证明:四边形ABCD是平行四边形,
,,
在和中,
,
≌,
.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
【分析】如图所示,过点A作AM⊥BC,垂足为M,先证明△ABE是等边三角形,从而求得BE=AB=2,继而求得AM长,再证明四边形AECF是平行四边形,继而根据平行四边形的面积公式进行计算即可求得.
【详解】如图所示,过点A作AM⊥BC,垂足为M,
∵四边形ABCD是平行四边形,
∴AD//BC,
∴∠B=180°-∠BAD=180°-120°=60°,
∠DAE=∠AEB,
∵AE平分∠BAD,∠BAD=120°,
∴∠DAE=60°,
∴∠AEB=60°,
∴△ABE是等边三角形,
∴BE=AB=2,
∴BM=1,AM=,
又∵CF//AE,∴四边形AECF是平行四边形,
∵CE=BC-BE=3-2=1,
∴S四边形AECF=CE•AM=,
故答案为:.
【点睛】本题考查了平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等,正确添加辅助线、熟练应用相关的定理与性质是解题的关键.
20、k>1
【解析】
∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
∴△<0,即(﹣1)1﹣4(k﹣1)<0,
解得k>1,
故答案为k>1.
21、1
【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.
【详解】
∵点(a,b)在一次函数y=2x-1的图象上,
∴b=2a-1,
∴2a-b=1,
∴4a-2b=6,
∴4a-2b-1=6-1=1,
故答案为:1.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
22、或
【解析】
解:分两种情况:
①△ABC为锐角三角形时,如图1.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,csC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•csC
∴BE=;
②△ABC为钝角三角形时,如图2.
作△ABC的高AD,BE为AC边的中线.
∵在直角△ACD中,AC=a,csC=,
∴CD=a,AD=a.
∵在直角△ABD中,∠ABD=45°,
∴BD=AD=a,
∴BC=BD+CD=a.
在△BCE中,由余弦定理,得
BE2=BC2+EC2-2BC•EC•csC
∴BE=.
综上可知AC边上的中线长是或.
23、
【解析】
分别令x,y为0,即可得出答案.
【详解】
解:∵当时,;当时,
∴一次函数的图象与轴交于点,与轴交于点.
故答案为:;.
本题考查的知识点是一次函数与坐标轴的交点坐标,比较简单基础.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
试题分析:
解:+=1
经检验:是原方程的解.
本题考查解分式方程,只需学生熟练掌握解方程的一般步骤,即可完成,注意分式方程结果要检验.
25、(1)班长代买A种品牌同学录12本,B种品牌同学录15本;(2)a的值为1.
【解析】
(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,根据总价=单价×数量结合购买A、B两种品牌同学录27本共花费246元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总价=单价×数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)设班长代买A种品牌同学录x本,B种品牌同学录y本,
依题意,得:,
解得:.
答:班长代买A种品牌同学录12本,B种品牌同学录15本.
(2)依题意,得:(8﹣3)×90(1+a%)+10(1﹣a%)×175[1+(a+1)%]=2550,
整理,得:a2﹣1a=0,
解得:a1=1,a2=0(舍去).
答:a的值为1.
本题考查了二元一次方程组和一元二次方程的实际应用,根据实际问题找出等量关系,列出方程是解题的关键.
26、见解析
【解析】
先根据已知条件推出AD∥EF,再由平行线的性质得出∠1=∠2,∠3=∠G,结合已知通过等量代换即可得到∠2=∠3,根据角平分线的定义可知AD是∠BAC的平分线.
【详解】
∵EG∥AD,
∴∠1=∠2,∠3=∠G,
∵∠G=∠1,
∴∠2=∠3.
∴AD平分∠BAC.
此题考查平行线的性质,解题关键在于掌握其性质定义.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
46
47
48
49
50
人数(人)
1
2
1
2
4
相关试卷
这是一份2025届上海市奉贤区九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市杨浦区上海同济大附属存志学校数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市松江区世泽中学九上数学开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。