2025届四川省成都市部分学校九年级数学第一学期开学学业质量监测试题【含答案】
展开这是一份2025届四川省成都市部分学校九年级数学第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A.B.1C.D.
2、(4分)如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是( )
A.x<﹣1或0<x<2B.x<﹣1或x>2
C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2
3、(4分)下列说法正确的是( )
A.某个对象出现的次数称为频率B.要了解某品牌运动鞋使用寿命可用普查
C.没有水分种子发芽是随机事件D.折线统计图用于表示数据变化的特征和趋势
4、(4分)如果中不含的一次项,则( )
A.B.C.D.
5、(4分)化简的结果是( )
A.2B.-2C.D.4
6、(4分)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10B.14C.20D.22
7、(4分)等于( )
A.B.C.3D.
8、(4分)下列事件中,属于不确定事件的是( )
A.科学实验,前100次实验都失败了,第101次实验会成功
B.投掷一枚骰子,朝上面出现的点数是7点
C.太阳从西边升起来了
D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
10、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
11、(4分)如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.
12、(4分)已知一等腰三角形有两边长为,4,则这个三角形的周长为_______.
13、(4分)平面直角坐标系中,点关于原点的对称点坐标为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线l:y1=﹣x﹣1与y轴交于点A,一次函数y2=x+3图象与y轴交于点B,与直线l交于点C,
(1)画出一次函数y2=x+3的图象;
(2)求点C坐标;
(3)如果y1>y2,那么x的取值范围是______.
15、(8分)定义:我们把对角线相等的四边形叫做和美四边形.
(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.
(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;
(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.
16、(8分)某校为了迎接体育中考,了解学生的体质情况,学校随机调查了本校九年级名学生“秒跳绳”的次数,并将调查所得的数据整理如下:
秒跳绳次数的频数、频率分布表
秒跳绳次数的频数分布直方图
、
根据以上信息,解答下列问题:
(1)表中, , ;
(2)请把频数分布直方图补充完整;
(3)若该校九年级共有名学生,请你估计“秒跳绳”的次数以上(含次)的学生有多少人?
17、(10分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为 的比例计入每人的最后总分,有4位应聘者的得分如下所示:
(1)写出4位应聘者的总分;
(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?
18、(10分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算______.
20、(4分)一组数据为5,7,3,,6,4. 若这组数据的众数是5,则该组数据的平均数是______.
21、(4分)甲乙两人在5次打靶测试中,甲成绩的平均数,方差,乙成绩的平均数,方差.教练根据甲、乙两人5次的成绩,选一名队员参加射击比赛,应选择__________.
22、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:
则这50名学生这一周在校的平均体育锻炼时间是____小时.
23、(4分)已知点,,直线与线段有交点,则的取值范围是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.
(1)求这个反比例函数的表达式;
(2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?
(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
25、(10分)已知城有肥料200吨,城有肥料300吨.现将这些肥料全部运往,两乡. 乡需要的肥料比乡少20吨.从城运往,两乡的费用分别为每吨20元和25元;从城运往,两乡的费用分别为每吨15元和24元.
(1)求,两乡各需肥料多少吨?
(2)设从城运往乡的肥料为吨,全部肥料运往,两乡的总运费为元,求与之间的函数关系式,并直接写出自变量的取值范围;
(3)因近期持续暴雨天气,为安全起见,从城到乡需要绕道运输,实际运费每吨增加了元(),其它路线运费不变.此时全部肥料运往,两乡所需最少费用为10520元,则的值为__ (直接写出结果).
26、(12分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
2、D
【解析】
析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1>y1时,x的取值范围.
解答:解:∵函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),
∴当y1>y1时,那么直线在双曲线的上方,
∴此时x的取值范围为-1<x<0或x>1.
故选D.
点评:本题考查了反比例函数与一次函数的交点问题的运用.关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围.
3、D
【解析】
根据频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质可判断.
【详解】
解:某个对象出现的次数称为频数,A错误;
要了解某品牌运动鞋使用寿命可用抽样调查,B错误;
没有水分种子发芽是不可能事件,C错误;
折线统计图用于表示数据变化的特征和趋势,D正确;
故选:D.
本题考查频次、频数的定义区别,抽样调查、普查的用法区别,不可能事件、随机事件的区分,折线统计图的性质等知识点,准确掌握相似说法的定义区别是本题的关键.
4、A
【解析】
利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.
【详解】
解:原式=x2+(m-5)x-5m,
由结果中不含x的一次项,得到m-5=0,
解得:m=5,
故选:A
此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.
5、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:,
故选:A.
此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
6、B
【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,DC=AB=6,
∵AC+BD=16,
∴AO+BO=8,
∴△ABO的周长是:1.
故选B.
平行四边形的性质掌握要熟练,找到等值代换即可求解.
7、B
【解析】
利用最简二次根式定义求解即可.
【详解】
解:,
故选:B.
此题考查最简二次根式定义,熟练掌握运算法则是解本题的关键.
8、A
【解析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A、是随机事件,故A符合题意;
B、是不可能事件,故B不符合题意;
C、是不可能事件,故C不符合题意;
D、是必然事件,故D不符合题意;
故选A.
本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的
概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不
发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、50
【解析】
根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=S△AHC+S△BFC+S△AEB=
=50
故答案为:50.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
10、30°
【解析】
分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
详解:∵四边形ABCD是矩形,
∴∠ADC=90°,OA=OD,
∴∠ODA=∠DAE,
∵∠CDE =2∠ADE,
∴∠ADE=90°÷3=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为:30°.
点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
11、84°.
【解析】
据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.
【详解】
正五边形的内角是∠ABC==108°,
∵AB=BC,
∴∠CAB=36°,
正六边形的内角是∠ABE=∠E==120°,
∵∠ADE+∠E+∠ABE+∠CAB=360°,
∴∠ADE=360°﹣120°﹣120°﹣36°=84°,
故答案为84°.
本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.
12、14或16.
【解析】
求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
(1)若4为腰长,6为底边长,
由于6−4<4<6+4,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+4+4=14.
(2)若6为腰长,4为底边长,
由于6−6<4<6+6,即符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+6+4=16.
故等腰三角形的周长为:14或16.
故答案为:14或16.
此题考查三角形三边关系,等腰三角形的性质,解题关键在于分情况讨论
13、
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
∵关于原点的对称两个点坐标符号相反,
∴点关于原点的对称点坐标为,
故答案为:.
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
三、解答题(本大题共5个小题,共48分)
14、 (1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
【解析】
(1)分别求出一次函数y1=x+3与两坐标轴的交点,再过这两个交点画直线即可;
(1)将两个一次函数的解析式联立得到方程组,解方程组即可求出点C坐标;
(3)根据图象,找出y1落在y1上方的部分对应的自变量的取值范围即可.
【详解】
解:(1)∵y1=x+3,
∴当y1=0时,x+3=0,解得x=﹣4,
当x=0时,y1=3,
∴直线y1=x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).
图象如下所示:
(1)解方程组,得,
则点C坐标为(﹣1,);
(3)如果y1>y1,那么x的取值范围是x<﹣1.
故答案为(1)画图见解析;(1)点C坐标为(﹣1,);(3)x<﹣1.
本题考查了一次函数的图象与性质,两直线交点坐标的求法,一次函数与一元一次不等式,需熟练掌握.
15、(1)矩形;(2)证明见解析;(3),证明见解析.
【解析】
(1)等腰梯形、矩形、正方形,任选一个即可;
(2)根据三角形中位线性质可得
(3),连接BE并延长至M,使,连接DM、AM、CM,先证四边形MABD是平行四边形,,,,是等边三角形,,由三角形中位线性质得.
【详解】
解:矩形的对角线相等,
矩形是和美四边形;
如图1,连接AC、BD,
,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,
,,
四边形EFGH是菱形,
,
,
四边形ABCD是和美四边形;
,
证明:如图2,连接BE并延长至M,使,连接DM、AM、CM,
,
四边形MABD是平行四边形,
,,
,
是等边三角形,
,
中,,,
.
本题综合考查了平行四边形的判定和三角形的有关知识,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系.
16、(1);;(2)详见解析;(3)336
【解析】
(1)根据0≤x<20的频数除以频率求出总人数,进而求出a,m的值即可;
(2)求出40≤x<60的频数,补全条形统计图即可;
(3)求出“30秒跳绳”的次数60次以上(含60次)的频率,乘以600即可得到结果.
【详解】
(1)根据题意得:a=10÷(5÷0.1)=0.2,b=0.14×(5÷0.1)=7,m=50-(5+10+7+12)=16;
故答案为:0.2;16;
(2)如图所示,柱高为;
(3)(人)
则“30秒跳绳”的次数60次以上(含60次)的学生约有336人.
此题考查了频数(率)分布直方图,以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解
【解析】
(1)求四位应聘者总分只需将各部分分数按比例相加即可;
(2)根据方差的意义分析即可.
【详解】
解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
应聘者B总分为85×50%+85×30%+70×20%=82分;
应聘者C总分为80×50%+90×30%+70×20%=81分;
应聘者D总分为90×50%+90×30%+50×20%=82分;
(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
18、见解析.
【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.
【详解】
证明:、分别是、的中点
是的中位线
同理:
四边形是平行四边形
本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先进行二次根式的化简,然后合并.
【详解】
解:原式.
故答案为:.
本题考查了二次根式的加减法,正确化简二次根式是解题的关键.
20、5
【解析】
首先根据众数的定义:是一组数据中出现次数最多的数值,即可得出,进而可求得该组数据的平均数.
【详解】
解:根据题意,可得
则该组数据的平均数为
故答案为5.
此题主要考查众数的理解和平均数的求解,熟练掌握,即可解题.
21、甲
【解析】
根据根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:因为甲、乙射击成绩的平均数一样,但甲的方差较小,说明甲的成绩比较稳定,因此推荐甲更合适.
本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数。
22、6.4
【解析】
试题分析: 体育锻炼时间=(小时).
考点:加权平均数.
23、﹣1≤m≤1.
【解析】
分别把点,代入直线,求得m的值,由此即可判定的取值范围.
【详解】
把M(﹣1,2)代入y=x+m,得﹣1+m=2,解得m=1;
把N(2,1)代入y=x+m得2+m=1,解得m=﹣1,
所以当直线y=x+m与线段MN有交点时,m的取值范围为﹣1≤m≤1.
故答案为:﹣1≤m≤1.
本题考查了一次函数的图象与线段的交点,根据点的坐标求得对应m的值,再利用数形结合思想是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2) 80吨货物;(3)6名.
【解析】
(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.
【详解】
解:(1)设y与x之间的函数表达式为y=,
根据题意得:50=,
解得k=400,
∴y与x之间的函数表达式为y=;
(2)∵x=5,
∴y=400÷5=80,
解得:y=80;
答:平均每天至少要卸80吨货物;
(3)∵每人一天可卸货:50÷10=5(吨),
∴80÷5=16(人),16﹣10=6(人).
答:码头至少需要再增加6名工人才能按时完成任务.
本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.
25、(1)140 吨,160 吨;(1);(3)a=1
【解析】
(1)设C乡需肥料m吨,根据题意列方程得答案;
(1)根据:运费=运输吨数×运输费用,得一次函数解析式;
(3)利用一次函数的性质列方程解答即可.
【详解】
(1)设乡需要肥料吨,列方程得
解得 ,
即两乡分别需肥料 140 吨,160 吨;
(1),
取值范围为:;
(3)根据题意得,(-4+a)x+11000=10510,
由(1)可知k=-4<0,w随x的增大而减小,所以x=140时,w有最小值,
所以(-4+a)×140+11000=10510,
解得a=1.
本题考查一次函数的应用,属于一般的应用题,解答本题的关键是根据题意得出y与x的函数关系式,另外同学们要掌握运用函数的增减性来判断函数的最值问题.
26、(1)①P2,P3 ,②1≤x≤或≤x≤-1;(2)2-≤a≤1.
【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.
【详解】
解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;
(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.
本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
项目
得分
应聘者
专业知识
英语水平
参加社会实践与社团活动等
A
85
85
90
B
85
85
70
C
80
90
70
D
80
90
50
时间(小时)
5
6
7
8
人数
10
15
20
5
相关试卷
这是一份2025届四川省乐至县九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省成都市邛崃市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届湖北省十堰市部分学校九年级数学第一学期开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。