


2025届四川省遂宁市市城区数学九上开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,确定事件是( )
A.向量与向量是平行向量B.方程有实数根;
C.直线与直线相交D.一组对边平行,另一组对边相等的四边形是等腰梯形
2、(4分)如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为( )
A.5B.6C.8D.10
3、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)关于的一元二次方程有实数根,则的最大整数值是( )
A.1B.0C.-1D.不能确定
5、(4分)有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52,以各组数为边长,能组成直角三角形的个数为( )
A.1 B.2 C.3 D.4
6、(4分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()
A.B.
C.D.
7、(4分)某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )
A.平均数不变,方差不变B.平均数不变,方差变大
C.平均数不变,方差变小D.平均数变小,方差不变
8、(4分)若关于x的分式方程的解为x =2,则m的值为( ) .
A.2B.0C.6D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,对角线AC与BD交于点O,过点A作AE⊥BD于点E,已知∠EAD=3∠BAE,则∠EOA=______°.
10、(4分)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(-1,4),则点C的坐标是_____.
11、(4分)在1,2,3,这四个数中,任选两个数的积作为k的值,使反比例函数的图象在第二、四象限的概率是________.
12、(4分)在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.
13、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1) ;
(2)
15、(8分)已知y与x-1成正比例,且当x=3时,y=4.
(1)写出y与x之间的函数表达式;
(2)当x= -2时,求y的值;
(3)当y=0时,求x的值
16、(8分)已知一次函数.
(1)在平面直角坐标系中画出该函数的图象;
(2)点(,5)在该函数图象的上方还是下方?请做出判断并说明理由.
17、(10分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:
(1)画出,并写出点D、E、F的坐标..
(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.
18、(10分)如图,直线是一次函数的图象.
(1)求出这个一次函数的解析式;
(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与轴的交点坐标
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.
20、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.
21、(4分) 用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.
22、(4分)已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.
23、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.
(1)先作出,再将向下平移5个单位长度后得到,请画出,;
(2)将绕原点逆时针旋转90°后得得到,请画出;
(3)判断以,,为顶点的三角形的形状.(无需说明理由)
25、(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.
(1)方程x2-8x+3=0的中点值是________;
(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.
26、(12分)已知关于的方程的一个根为一1,求另一个根及的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据“必然事件和不可能事件统称确定事件”逐一判断即可.
【详解】
A. 向量与向量是平行向量,是随机事件,故该选项错误;
B. 方程有实数根,是确定事件,故该选项正确;
C. 直线与直线相交,是随机事件,故该选项错误;
D. 一组对边平行,另一组对边相等的四边形是等腰梯形,是随机事件,故该选项错误;
故选:B.
本题主要考查确定事件,掌握确定事件和随机事件的区别是解题的关键.
2、A
【解析】
由等腰三角形的性质证得BD=DC,根据直角三角形斜边上的中线的性质即可求得结论.
【详解】
解:∵AB=AC=10,AD平分∠BAC,
∴AD⊥BC,
∵E为AC的中点,
,
故选:A.
本题主要考查了等腰三角形的性质,直角三角形斜边上的中线的性质,熟练掌握直角三角形斜边上的中线的性质是解决问题的关键.
3、C
【解析】
先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.
【详解】
时,,
随的增大而减小,函数图象从左往右下降,
,
,
,
即函数图象与轴交于正半轴,
这个函数的图象不经过第三象限.
故选:.
本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.
4、C
【解析】
利用一元二次方程的定义和判别式的意义得到a≠0且△=(﹣1)2﹣4a≥0,求出a的范围后对各选项进行判断.
【详解】
解:根据题意得a≠0且△=(﹣1)2﹣4a≥0,
解得a≤且a≠0,
所以a的最大整数值是﹣1.
故选:C.
本题考查了一元二次方程的定义和根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
5、C
【解析】因为72+242=252;122+162=202;92+402=412;42+62≠82;(32)2+(42)2≠(52)2,所以能组成直角三角形的个数为3个.
故选C.
本题主要考查了勾股定理的逆定理,如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,已知一个三角形三边的长,常用勾股定理的逆定理判断这个三角形是否是直角三角形.
6、A
【解析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.
【详解】
解:设有x个队参赛,根据题意,可列方程为:
x(x﹣1)=36,
故选:A.
此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.
7、C
【解析】
解: =(160+165+170+163+1)÷5=165,S2原=, =(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.
8、C
【解析】
根据分式方程的解为x =2,把x =2代入方程即可求出m的值.
【详解】
解:把x =2代入得,
,
解得
m=6.
故选C.
点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由已知条件可先求得,在Rt△ABE中可求得,再由矩形的性质可得OA=OB,则可求得,即可求得结果;
【详解】
∵四边形ABCD是矩形,
∴,OA=OB,
∵∠EAD=3∠BAE,
∴,
∴,
∵AE⊥BD,
∴,
∴,
.
故答案是.
本题主要考查了利用矩形的性质求角度,准确利用已知条件是解题的关键.
10、 (3,0)
【解析】
试题分析:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
【详解】
根据点A的坐标即可确定正方形的边长,从而求得点C的坐标.
∵正方形ABCD,点A的坐标是(-1,4)
∴点C的坐标是(3,0).
考点:坐标与图形性质.
11、
【解析】
四个数任取两个有6种可能.要使图象在第四象限,则k<0,找出满足条件的个数,除以6即可得出概率.
【详解】
依题可得,任取两个数的积作为k的值的可能情况有6种(1,2)、(1,3)、(1,-4)、
(2,3)、(2,-4)、(3,-4),
要使反比例函数y=kx的图象在第二、四象限,则k<0,
这样的情况有3种即(1,-4)、(2,-4)、(3,-4),
故概率为:=.
本题考查反比例函数的选择,根据题意找出满足情况的数量即是解题关键.
12、1
【解析】
利用平行四边形的对角相等、邻角互补可求得答案.
【详解】
解:因为四边形ABCD是平行四边形,
所以∠B=∠D,∠A+∠B=180°.
因为∠B+∠D=190°,
所以∠B=95°.
所以∠A=180°﹣95°=1°.
故答案为1.
此题考查平行四边形的性质,解题关键在于掌握其性质定理
13、1
【解析】
取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.
【详解】
如图,取AD的中点E,连接OE,CE,OC,
∵∠AOD=10°,
∴Rt△AOD中,OE=AD=4,
又∵∠ADC=10°,AB=CD=3,DE=4,
∴Rt△CDE中,CE==5,
又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),
∴OC的最大值为1,
即点C到原点O距离的最大值是1,
故答案为:1.
此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)10 ;(2)
【解析】
根据二次根式的混合运算法则进行计算,即可解答.
【详解】
(1)原式= ;
(2)
=
= ;
此题考查二次根式的混合运算,解题关键在于掌握运算法则.
15、 (1) ;(2)-6;(3)1
【解析】
(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
(2)利用(1)中关系式求出x=-2时对应的函数值y即可.
(3)利用(1)中关系式求出y=0时对应的自变量x即可.
【详解】
解:(1)由题意可设,因为当时,
所以,,解得,
故与之间的函数表达式为
(2)因为,所以当时,
(3)因为,所以当时,即,解得
题考查了待定系数法求一次函数解析式.注意本题中是“y与x-1成正比例”,而不是“y与x成正比例”.
16、(1)见解析;(2)点在该函数图象的上方,理由见解析.
【解析】
(1)根据题意代入x=0和,进行描点,并连接两点即可画出该函数的图象;;
(2)根据题意先求出x=时的y的值,判断其与5的大小即可解决问题.
【详解】
解:(1)如图,列表描点如下
函数图象如图2所示.
(2)对于当时,
因为
所以点在该函数图象的上方.
本题考查一次函数图象上的点的坐标特征,解题的关键是熟练掌握列表描点法和待定系数法解决问题.
17、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)
【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;
(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.
【详解】
解:(1)如图,△DEF即为所求,
点D的坐标是,即(0,4);
点E的坐标是,即(2,2);
点F的坐标为,即(3,5);
(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).
本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.
18、(1);(2),
【解析】
(1)利用待定系数法求一次函数解析式即可;
(2)根据一次函数的平移规律:左加右减,上加下减,即可求出平移后的解析式,然后将y=0代入求出x的值,即可求出结论.
【详解】
解:(1)把点,代入中,得:
解得
∴一次函数的解析式为
(2)将该函数的图象向下平移3个单位后得.
当时,解得:
∴平移后函数图象与轴的交点坐标为
此题考查的是求一次函数的解析式和一次函数图象的平移,掌握用待定系数法求一次函数的解析和一次函数的平移规律:左加右减,上加下减是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.
【详解】
解:
将△OBC绕O点旋转90°,
∵OB=OA
∴点B落在A处,点C落在D处
且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,
在四边形OACB中
∵∠BOA=∠BCA=90°,
∴∠OBC+∠OAC=180°,
∴∠OAD+∠OAC=180°
∴C、A、D三点在同一条直线上,
∴△OCD为等要直角三角形,根据勾股定理
CD2=OC2+OD2
即CD2=32+32=18
解得CD=
即BC+AC=.
本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.
20、
【解析】
连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.
【详解】
解:连结,作于,
在矩形内放入四个小正方形和两个小长方形后成中心对称图形,
,,
,
长与宽的比为,
即,
故答案为:.
此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.
21、三角形的三个内角都小于60°
【解析】
熟记反证法的步骤,直接填空即可.
【详解】
第一步应假设结论不成立,即三角形的三个内角都小于60°.
故答案为三角形的三个内角都小于60°.
反证法的步骤是:
(1)假设结论不成立;
(2)从假设出发推出矛盾;
(3)假设不成立,则结论成立.
在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
22、1
【解析】
根据多边形的内角和定理,多边形的内角和等于(n-2)•110°,外角和等于360°,然后列方程求解即可.
【详解】
解:设这个凸多边形的边数是n,根据题意得
(n-2)•110°=3×360°,
解得n=1.
故这个凸多边形的边数是1.
故答案为:1.
本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.
23、
【解析】
设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
【详解】
解:设雕像的下部高为x m,则题意得:,
整理得:,
解得: 或 (舍去);
∴它的下部应设计的高度为.
故答案为:.
本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)等腰直角三角形
【解析】
(1)利用描点法作出△ABC,再利用点平移的坐标特征写出A、B、C的对应点A1、B1、C1,然后描点得到△A1B1C1;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2,C2,从而得△A2B2C2;
(3)利用勾股定理和勾股定理的逆定理可证明△OA1B为等腰直角三角形.
【详解】
解:(1)如图所示,△A1B1C1即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)三角形的形状为等腰直角三角形.
∵OB=,OA1=,BA1=,
∴OB2+OA12=BA12,
∴△OA1B为等腰直角三角形.
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
25、 (1)4;(2)48.
【解析】
(1)根据中点值的定义进行求解即可;
(2)根据中点值的定义可求得m的值,再将方程的根代入方程可求得n的值,由此即可求得答案.
【详解】
(1),
x2-2×4x+3=0,
42-3=13>0,
所以中点值为4,
故答案为4;
(2)由中点值的定义得:,,
,
将代入方程,得:,,
.
本题考查了一元二次方程的根,新定义,弄懂新定义是解题的关键.
26、,另一根为7.
【解析】
把x=-1代入方程可得关于m的方程,解方程可求得m的值,把m的值代入原方程得到关于x的方程,解方程即可求得另一个根.
【详解】
把x=-1代入方程得1+6+m2-3m-5=0,
即m2-3m+2=0,解得,
当m=1或m=2时,方程为x²-6x-7=0,
解得x=-1或x=7,即另一根为7,
综上可得,另一根为7.
本题考查了一元二次方程的根以及解一元二次方程,正确把握一元二次方程根的定义以及解一元二次方程的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
2025届四川省长宁县九上数学开学教学质量检测模拟试题【含答案】: 这是一份2025届四川省长宁县九上数学开学教学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届四川省遂宁市遂宁市第二中学数学九上开学考试模拟试题【含答案】: 这是一份2025届四川省遂宁市遂宁市第二中学数学九上开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届四川省遂宁市射洪县数学九上开学达标检测模拟试题【含答案】: 这是一份2025届四川省遂宁市射洪县数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。