2025届新疆生产建设兵团第二师三十团中学数学九年级第一学期开学检测模拟试题【含答案】
展开
这是一份2025届新疆生产建设兵团第二师三十团中学数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面几组条件中,能判断一个四边形是平行四边形的是( )
A.一组对边相等B.两条对角线互相平分
C.一组对边平行D.两条对角线互相垂直
2、(4分)方程 x2 x 的解是( )
A.x 1B.x1 1 , x2 0
C.x 0D.x1 1 , x2 0
3、(4分)关于的不等式组恰好有四个整数解,那么的取值范围是( )
A.B.C.D.
4、(4分)如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=( )
A.1.5B.3C.4D.5
5、(4分)的倒数是( )
A.B.C.﹣3D.
6、(4分)若一次函数的图象经过两点和,则下列说法正确的是( )
A.B.C.D.
7、(4分)对角线相等且互相平分的四边形是( )
A.一般四边形B.平行四边形C.矩形D.菱形
8、(4分)已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是( )
A.1B.-1C.2D.-2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
10、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.
11、(4分)对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.
12、(4分)如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为 时,△BOC与△AOB相似.
13、(4分)已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a与b的大小关系是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
(1)图中m=_____,n=_____;(直接写出结果)
(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
15、(8分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.
(1)直接写出点B和点D的坐标.
(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.
(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.
16、(8分)定义:我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,那么四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:
①如图1,垂美四边形ABCD两组对边AB、CD与BC、AD之间有怎样的数量关系?写出你的猜想,并给出证明.
②如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(3)问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG,GE,已知AC=2,AB=1.求GE的长度.
17、(10分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
18、(10分)计算:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算: =_________.
20、(4分)两个面积都为的正方形纸片,其中一个正方形的顶点与另一个正方形对角线的交点重合,则两个正方形纸片重叠部分的面积为__________.
21、(4分)抛物线的顶点坐标是__________.
22、(4分)一次函数的图像是由直线__________________而得.
23、(4分)在矩形中,,,以为边在矩形外部作,且,连接,则的最小值为___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:
学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.
(1)参加此次研学活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;
(3)学校共有几种租车方案?最少租车费用是多少?
25、(10分)解方程:(1)x2+2x=0 (2)x2-4x-7=0.
26、(12分)已知在▱ABCD中,点E、F在对角线BD上,BE=DF,点M、N在BA、DC延长线上,AM=CN,连接ME、NF.试判断线段ME与NF的关系,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法,采用排除法,逐项分析判断.
解:A、一组对边相等,不能判断,故错误;
B、两条对角线互相平分,能判断,故正确;
C、一组对边平行,不能判断,故错误;
D、两条对角线互相垂直,不能判断,故错误.
故选B.
考点:平行四边形的判定.
2、B
【解析】
先变形得一元二次方程的一般形式,再用分解因式法解方程即可.
【详解】
解:移项,得x2-x=0,
原方程即为,
所以,x=0或x-1=0,
所以x1 1 , x2 0.
故选B.
本题考查了一元二次方程的解法,熟知一元二次方程的四种解法(完全开平方法、配方法、公式法和分解因式法)并能根据方程的特点灵活应用是求解的关键.
3、C
【解析】
可先用m表示出不等式组的解集,再根据恰有四个整数解可得到关于m的不等式,可求得m的取值范围.
【详解】
解:
在中,
解不等式①可得x>m,
解不等式②可得x≤3,
由题意可知原不等式组有解,
∴原不等式组的解集为m<x≤3,
∵该不等式组恰好有四个整数解,
∴整数解为0,1,2,3,
∴-1≤m<0,
故选C.
本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用.
4、A
【解析】
根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.
【详解】
由旋转可得,△ABC≌△EDC,
∴DE=AB=1.5,
故选A.
本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.
5、D
【解析】
利用倒数定义得到结果,化简即可.
【详解】
的倒数为.
故选D.
此题考查了分母有理化,熟练掌握运算法则是解本题的关键.
6、A
【解析】
根据一次函数的增减性求解即可.
【详解】
∵2>0,
∴y随x的增大而增大,
∵-10时,y随x的增大而增大;当k
相关试卷
这是一份2024-2025学年新疆生产建设兵团农八师一四三团第一中学数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年新疆生产建设兵团第二师二十五团中学九年级数学第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年新疆生产建设兵团27团中学九年级数学第一学期开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。