2025届肇庆市重点中学九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为0,则x的值为( )
A.0B.1C.﹣1D.±1
2、(4分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
A.B.C.D.
3、(4分)若与最简二次根式是同类二次根式,则的值为( )
A.7B.9C.2D.1
4、(4分)若分式方程=2+有增根,则a的值为( )
A.4B.2C.1D.0
5、(4分)以下列长度的线段为边,能构成直角三角形的是( )
A.2,3,4B.4,5,6C.8,13,5D.1,,1
6、(4分)已知:是整数,则满足条件的最小正整数为( )
A.2B.3C.4D.5
7、(4分)若ab>0,ac<0,则一次函数的图象不经过下列个象限( )
A.第一象限B.第二象限C.第三象限D.第四象限
8、(4分)下列标识中,既是轴对称图形,又是中心对称图形的是()
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是 .
10、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
11、(4分)小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如表所示,
通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是_____.
12、(4分)如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为_______cm.
13、(4分)如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校在一次献爱心捐款活动中,学校团支部为了解本校学生的各类捐款人数的情况,进行了一次统计调查,并绘制成了统计图①和②,请解答下列问题.
(1)本次共调查了多少名学生.
(2)补全条形统计图.
(3)这些学生捐款数的众数为 ,中位数为 .
(4)求平均每个学生捐款多少元.
(5)若该校有600名学生,那么共捐款多少元.
15、(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过300元后的价格部分打7折.
(1)以(单位:元)表示商品原价,(单位:元)表示购物金额,分别就两家商场的让利方式写出与的函数解析式;
(2)在同一直角坐标系中画出(1)中函数的图象;
(3)春节期间如何选择这两家商场去购物更省钱?
16、(8分)计算:÷+×﹣.
17、(10分)问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
类比探究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.
(2)△DEF是否为正三角形?请说明理由.
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.
18、(10分)四边形中,,,,,垂足分别为、.
(1)求证:;
(2)若与相交于点,求证:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式方程有增根,则等于__________.
20、(4分)当m=____时,关于x的分式方程无解.
21、(4分)如图在中,,,的平分线交于,交的延长线于,则的值等于_________.
22、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
23、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)△ODC与△ABD的面积分别记为S1,S2,设S=S1﹣S2,求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.
25、(10分)(1)计算:(1+2)(﹣)﹣(﹣)2
(2)因式分解:2mx2﹣8mxy+8my2
26、(12分)用适当的方法解下列方程:
(1)x(2﹣x)=x2﹣2
(2)(2x+5)2﹣3(2x+5)+2=0
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.
【详解】∵分式的值为零,
∴,
解得:x=1,
故选B.
【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.
2、C
【解析】
由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.
3、D
【解析】
先将化简为最简二次根式,,根据同类二次根式的定义得出a+1=2,求出a即可.
【详解】
∵与最简二次根式是同类二次根式
∴a+1=2
解得a=1
故选:D
本题考查了最简二次根式和同类二次根式的定义,满足下列两个条件的二次根式,叫做最简二次根式,被开方数不含分母,被开方数中不含能开得尽方的因数或因式;把几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.
4、A
【解析】
分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.
【详解】
原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.
理解无解的含义是解题的关键.
5、D
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、因为22+32≠42,所以不能组成直角三角形;
B、因为52+42≠62,所以不能组成直角三角形;
C、因为52+82≠132,所以不能组成直角三角形;
D、因为12+12=()2,所以能组成直角三角形.
故选:D.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
6、D
【解析】
试题解析:∵=,且是整数,
∴2是整数,即1n是完全平方数,
∴n的最小正整数为1.
故选D.
点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.
7、C
【解析】
根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数的图象经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
解:∵ab>0,ac<0,
∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,
∴当a>0时,b>0,c<0时,一次函数的图象经过第一、二、四象限,不经过第三象限,
当a<0时,b<0,c>0时,一次函数的图象经过第一、二、四象限,不经过第三象限,
由上可得,一次函数的图象不经过第三象限,
故选:C.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
8、A
【解析】
试题分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形性质做出判断.①既是中心对称图形,也是轴对称图形,故此选项正确;②不是中心对称图形,是轴对称图形,故此选项错误;③不是中心对称图形,是轴对称图形,故此选项错误;④是中心对称图形,不是轴对称图形,故此选项正确.
故选A.
考点:中心对称图形;轴对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
试题分析:延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.
解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG为△BCD的中位线,∴EG=BC,
又FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=1.
故答案为:1.
点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.
10、x>1
【解析】
利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
【详解】
解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
∴当y>0时,x﹣1>0,
解得x>1,
故答案为:x>1.
本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
11、小李
【解析】
根据方差的意义知,波动越大,成绩越不稳定. 观察表格可得,小李的方差大,说明小李的成绩波动大,不稳定,
【详解】
观察表格可得,小李的方差大,意味着小李的成绩波动大,不稳定
此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定
12、10
【解析】
连接PC,根据等边三角形三线合一的性质,可得PC=BP,PD+PB要取最小值,应使D、P、C三点一线.
【详解】
连接PC,
∵△ABC为等边三角形,D为AB的中点,
∴PD+PB的最小值为:PD+PB=PC+PD=CD=AH=10cm.
故答案为:10
考查轴对称-最短路线问题,等边三角形的性质,找出点P的位置是解题的关键.
13、
【解析】
根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.
【详解】
∵四边形是菱形,
∴,,
∴,
∵,
∴,
∴,
∴,
∵,
∴;
故答案为:.
本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)本次调查的学生总人数为50人;(2)补全条形图见解析;(3)15元、15元;(4)平均每个学生捐款13元;(5)该校有600名学生,那么共捐款7800元.
【解析】
(1)由捐款5元的人数及其所占百分比可得总人数;
(2)总人数乘以对应百分比求得捐10元、20元的人数,据此补全图形可得;
(3)根据众数和中位数的定义计算可得;
(4)根据加权平均数的定义求解可得;
(5)总人数乘以样本中每个学生平均捐款数可得.
【详解】
(1)本次调查的学生总人数为8÷16%=50(人);
(2)10元的人数为50×28%=14(人),20元的人数为50×12%=6(人),
补全条形图如下:
(3)捐款的众数为15元,中位数为=15(元),
故答案为:15元、15元.
(4)平均每个学生捐款 =13(元);
(5)600×13=7800,
答:若该校有600名学生,那么共捐款7800元.
本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中获取准确的信息.
15、(1)甲商场:y=0.8x,乙商场:y=x(0≤x≤300),y=0.7x+90(x>300);(2)见解析;(3)见解析
【解析】
(1)根据两家商场的让利方式分别列式整理即可;
(2)利用两点法作出函数图象即可;
(3)求出两家商场购物付款相同的x的值,然后根据函数图象作出判断即可.
【详解】
解:(1)甲商场所有商品按8折出售,
则甲商场:y=0.8x,
乙商场对一次购物中超过300元后的价格部分打7折,
则乙商场:y=x(0≤x≤300),
y=(x-300)×0.7+300=0.7x+90(x>300);
(2)如图,函数的图象如图所示;
(3)当0.8x=0.7x+90时,x=900,
所以,x<900时,甲商场购物更省钱,
x=900时,甲、乙两商场购物更花钱相同,
x>900时,乙商场购物更省钱.
本题考查了一次函数的应用,一次函数图象,读懂题目信息,理解两家商场的让利方法是解题的关键,要注意乙商场根据商品原价的取值范围分情况讨论.
16、.
【解析】
先进行二次根式化简和乘除运算,然后再进行加减即可.
【详解】
解:原式
=4﹣.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
17、 (1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1
【解析】
试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、
(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;
(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b, 在RtΔABG中,由勾股定理即可得出结论.
试题解析: (1)△ABD≌△BCE≌△CAF;理由如下:
∵△ABC是正三角形,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,
∴∠ABD=∠BCE,
在△ABD和△BCE中,
,
∴△ABD≌△BCE(ASA);
(1)△DEF是正三角形;理由如下:
∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形;
(3)作AG⊥BD于G,如图所示:
∵△DEF是正三角形,
∴∠ADG=60°,
在Rt△ADG中,DG=b,AG=b,
在Rt△ABG中,c1=(a+b)1+(b)1,
∴c1=a1+ab+b1.
考点:1.全等三角形的判定与性质;1.勾股定理.
18、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;
(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.
【详解】
证明:(1)∵BE=DF,
∴BE-EF=DF-EF,
即BF=DE,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在Rt△ADE与Rt△CBF中,
,
∴Rt△ADE≌Rt△CBF;
(2)如图,连接AC交BD于O,
∵Rt△ADE≌Rt△CBF,
∴∠ADE=∠CBF,
∴AD∥BC,又AD=BC,
∴四边形ABCD是平行四边形,
∴AO=CO.
本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
解:方程两边都乘以(x-2),得
,
∵原方程的增根是,
把增根代入,得:,
∴,
故答案为:4.
本题考查了分式方程的增根,增根确定后可按如下步骤进行:
①化分式方程为整式方程;
②把增根代入整式方程即可求得相关字母的值.
20、-6
【解析】
把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
21、4
【解析】
根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC=8,CD=AB=6,
∴∠F=∠DCF,
∵∠C平分线为CF,
∴∠FCB=∠DCF,
∴∠F=∠FCB,
∴BF=BC=8,
同理:DE=CD=6,
∴AF=BF-AB=2,AE=AD-DE=2,
∴AE+AF=4;
本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.
22、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
23、
【解析】
由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
函数y=ax+b和y=kx的图象交于点P(-4,-2),
即x=-4,y=-2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故答案为:.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2)D(x,0)(x>6)
【解析】
(1)根据平移的性质可以求得点C的坐标,然后根据两点间的距离公式即可求得AC的长;
(2)根据题意,可以分别表示出S1,S2,从而可以得到S关于x的函数解析式,由图和题目中的条件可以求得△CDB的面积,从而可以求得满足条件的点D的坐标,本题得以解决.
【详解】
(1)由题意知,将线段OA平移至CB,
∴四边形OABC为平行四边形.
又∵A(6,0),B(8,5),∴点C(2,5).
过点C作CE⊥OA于E,连接AC,在Rt△CEA中,
AC===.
(2)∵点D的坐标为(x,0),
若点D在线段OA上,即当0<x<6时,
,,
∴=5x-1.
若点D在OA的延长线上,即当x>6时,
,,
∴=1.
由上可得,
∵,
当0<x<6时,时,x=6(与A重合,不合题意,舍去);
当x>6时,,点D在OA延长线上的任意一点处都可满足条件,
∴点D所在位置为D(x,0)(x>6).
本题考查一次函数的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.
25、(1)﹣+1;(1)1m(x﹣1y)1.
【解析】
(1)利用平方差公式,完全平方公式进行计算即可
(1)先提取公因式1m,再对余下的多项式利用完全平方公式继续分解.
【详解】
(1)原式=﹣+6﹣1 ﹣(1﹣1+3)
=﹣+6﹣1﹣5+1
=﹣+1;
(1)原式=1m(x﹣4xy+4y)
=1m(x﹣1y)1.
此题考查提公因式法与公式法的综合运用,二次根式的混合运算,解题关键在于掌握运算法则
26、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.
【解析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;
(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
方差
小张
7.2
7.5
7
1.2
小李
7.1
7.5
8
5.4
2025届唐山市重点中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届唐山市重点中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黔东南市重点中学数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份2025届黔东南市重点中学数学九年级第一学期开学学业质量监测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届吉林省重点中学九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份2025届吉林省重点中学九年级数学第一学期开学学业质量监测试题【含答案】,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。