2025届浙江省金华、丽水市九上数学开学检测试题【含答案】
展开
这是一份2025届浙江省金华、丽水市九上数学开学检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则下列不等式中不正确的是( )
A.B.C.D.
2、(4分)已知a>b,若c是任意实数,则下列不等式中总是成立的是()
A.a-c>b-cB.a+c<b+cC.ac>bcD.ac<bc
3、(4分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是( )
A.2B.2.5C.3D.4
4、(4分)已知,,则的结果为( )
A.B. C.D.
5、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
6、(4分)如图,在边长为2的菱形中, , ,,则的周长为( )
A.3B.6C.D.
7、(4分)函数的图象是双曲线,则m的值是( )
A.-1B.0C.1D.2
8、(4分)在中,对角线相交于点,以点为坐标原点建立平面直角坐标系,其中,则点的坐标是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.
10、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.
11、(4分)如果关于的一次函数的图像不经过第三象限,那么的取值范围________.
12、(4分)如图,矩形中,,对角线交于点,则______,______.
13、(4分)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值: ,其中.
15、(8分)求证:菱形的对角线互相垂直.
16、(8分)如图,在白纸上画两条长度均为且夹角为的线段、,然后你把一支长度也为的铅笔放在线段上,将这支铅笔以线段上的一点为旋转中心旋转顺时针旋转一周.
图 ① 图 ②
(1)若与重合,当旋转角为______时,这支铅笔与线段、围成的三角形是等腰三角形.
(2)点从逐渐向移动,记:
①若,当旋转角为、______、______、______、、______时这支铅笔与线段、共围成6个等腰三角形.
②当这支铅笔与线段、正好围成5个等腰三角形时,求的取值范围.
③当这支铅笔与线段、正好围成3个等腰三角形时,直接写出的取值范围.
17、(10分)如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE= .
18、(10分)已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式组的整数解有_____个.
20、(4分)命题“全等三角形的面积相等”的逆命题是__________
21、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E为AD的中点,则OE的长为___.
22、(4分)甲、乙两名同学的5次数学成绩情况统计结果如下表:
根据上表,甲、乙两人成绩发挥较为稳定的是______填:甲或乙
23、(4分)已知是一元二次方程x2-4x+c=0的一个根,则方程的另一个根是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求代数式的值,其中
25、(10分)如图,在Rt△ABC中,∠C=90°.
(1)求作:△ABC的一条中位线,与AB交于D点,与BC交于E点.(保留作图痕迹,不写作法)
(2)若AC=6,AB=10,连结CD,则DE=_ ,CD=_ .
26、(12分)计算:(1) ; (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵,∴ ,故正确;
B. ∵,∴,故正确;
C. ∵,∴,故正确;
D. ∵,∴,故不正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
2、A
【解析】
根据不等式的性质,应用排除法分别将各选项分析求解即可求得答案.
【详解】
A、∵a>b,c是任意实数,∴a-c>b-c,故本选项正确;
B、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;
C、当a>b,c<0时,ac>bc,而此题c是任意实数,故本选项错误;
D、当a>b,c>0时,ac<bc,而此题c是任意实数,故本选项错误.
故选A.
3、B
【解析】
取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.
【详解】
如图:
EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,
∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴四边形CDMN是矩形,
∴MN=CD=4,
设OF=x,则ON=OF,
∴OM=MN-ON=4-x,MF=2,
在直角三角形OMF中,OM2+MF2=OF2,
即:(4-x)2+22=x2,
解得:x=2.5,
故选B.
本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.
4、B
【解析】
将代数式因式分解,再代数求值即可.
【详解】
故选B
本题考查知识点涉及因式分解以及代数式求值,熟练掌握因式分解,简化计算是解答本题的关键.
5、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
6、C
【解析】
利用菱形的性质可得,AD=AB=BC=CD=2,∠ADC=120°由30°的直角三角形可得 利用勾股定理得 同理可得,∠FDC=30°,可证△DEF是等边三角形继而可得△DEF的周长为
【详解】
解:在菱形ABCD中,AD=AB=BC=CD=2
∵DE⊥AB
∴∠AED=90°
∵∠A=60°
∴∠ADE=30°,∠ADC=120°
∴
∴
同理 ,∠FDC=30°
∴∠EDF=60°,
∵
∴△DEF是等边三角形
∴
∴△DEF的周长为
故答案为:C
本题考查了菱形的性质以及勾股定理和等边三角形的判定,正确掌握菱形的性质及含30°的直角三角形的性质是解题的关键.
7、C
【解析】
根据反比例函数的定义列出关于m的不等式组,求出m的值即可.
【详解】
解:∵函数的图象是双曲线,
∴,解得m=1.
故选:C.
本题考查的是反比例函数的定义,即形如y=(k为常数,k≠0)的函数称为反比例函数.
8、A
【解析】
画出图形,利用平行四边形的性质解答即可.
【详解】
解:如图:
∵在▱ABCD中,C(3,1),
∴A(-3,-1),
∴B(-4,1),
∴D(4,-1);
故选:A.
本题考查平行四边形的性质,解题的关键是利用平行四边形的性质解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答.
【详解】
解:在矩形ABCD中,,
,
,
,
又,
.
故答案为:1.
此题考查矩形的性质,解题关键在于利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质.
10、1
【解析】
由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.
【详解】
解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
∴CD=DE.
又∵AD=AD,
∴Rt△ACD≌Rt△AED,
∴AC=AE.
又∵AC=BC,
∴BC=AE,
∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.
故答案为:1.
本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.
11、
【解析】
由一次函数的图象不经过第三象限,则,并且,解两个不等式即可得到m的取值范围.
【详解】
解:∵一次函数的图像不经过第三象限,
∴,,
解得:,
故答案为.
本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
12、 .
【解析】
根据矩形的性质求出∠BAD=90°,根据勾股定理求出AD,根据含30°角的直角三角形的性质求出AE=AD,即可求出AE.
【详解】
解:∵四边形ABCDD是矩形,
∴∠BAD=90°,
在Rt△BAD中,由勾股定理得:
∵在Rt△BAD中,AB=2,BD=4,
∴AB=BD,
∴∠ADB=30°,
∵AE⊥BD,
∴∠AED=90°,
∴AE=AD==,
故答案为:.
本题考查了勾股定理,矩形的性质和含30°角的直角三角形的性质,能灵活运用性质进行推理是解此题的关键.
13、1
【解析】
过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
【详解】
解:过A作x轴垂线,过B作x轴垂线,
点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
∴A(1,1),B(2,),
∵AC∥BD∥y轴,
∴C(1,k),D(2,),
∵△OAC与△ABD的面积之和为,
,
S△ABD=S梯形AMND﹣S梯形AAMNB,
,
∴k=1,
故答案为1.
本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
根据分式的运算法则即可进行化简求值.
【详解】
原式===
当x=时,原式= =
此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
15、详见解析
【解析】
根据AD=AB,OD=OB,AO=AO,推得△AOD≌△AOB,所以对角线AC,BD互相垂直.
【详解】
已知:菱形ABCD中,AC,BD交于点O,求证:AC⊥BD .
证明:∵四边形ABCD是菱形,
∴AD=AB,OD=OB,
又∵AO=AO,
∴△AOD≌△AOB(SSS),
∴∠AOD=∠AOB,
又∵∠AOD+∠AOB=180°,
∴∠AOD=90°,
即 AC⊥BD .故菱形的对角线互相垂直 .
此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.
16、(1)或;(2)①、、、;②;③
【解析】
(1)运用旋转的性质作答即可;
(2)①对旋转的各个位置进行讨论,即可完成解答; 当旋转,,时,这段与、三次围成等腰三角形,这样正好围成6个等于三角形分类讨论即可;
【详解】
解:(1)当已知的30°角为底角,那么旋转30°即可;
当已知的30°角为顶角,那么旋转75°即可;
故答案为或.
(2)①t=1,即P为AB的中点:
当已知的30°角为底角,那么30°、120°、210°、300°即可;
当已知的30°角为顶角,那么旋转75°、255°即可;
故答案为:、、、
②如图1,位于中点时,分成了、两段,以点为旋转中心将其旋转,,时,这段与、三次围成等腰三角形,当旋转,,时这段与、三次围成等腰三角形,这样正好围成6个等于三角形,此时.
如图2,当旋转时,当(起初与重合的)正好与等长,即时,当旋转,,时较长的这段与、三次围成等腰三角形,当旋转,时较短的这段与、两次围成等腰三角形,
如图,,,,令,则,,易知,,,
此时可求得,,,
故旋转形成5个等腰三角形时,.
③如图:
当时,3个 , 当时,4个 ,
可求得.
注:时可这样求解,如下图
在上取,使,则,,令,
则,,,,
本题属于一道旋转的几何综合题,难度较大,解答的关键在于对旋转的不同位置的分类讨论.
17、(1)见解析;(2)1.
【解析】
根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
【详解】
(1)如图所示:E点即为所求.
(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
考点:作图—复杂作图;平行四边形的性质
18、(1)∠EBC=25°;(2)见解析;
【解析】
(1)根据等边对等角以及平行线的性质,即可得到∠1=∠2=∠ABC,再根据平行四边形ABCD中,∠D=50°=∠ABC,可得出∠EBC的度数;
(2)过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,先根据AAS判定△BPG≌△BFG,得到PG=GF,根据矩形GFNM中GF=MN,即可得出PG=NM,进而判定△PAG≌△NCM(AAS),可得AG=CM,再根据等角对等边得到AH=AG,即可得到结论.
【详解】
(1)∵AB=AE,
∴∠1=∠3,
∵AE∥BC,
∴∠2=∠3,
∴∠1=∠2=∠ABC,
又∵平行四边形ABCD中,∠D=50°,
∴∠ABC=50°,
∴∠EBC=25°;
(2)证明:如图,过M作MN⊥BC于N,过G作GP⊥AB于P,则∠CNM=∠APG=90°,
由(1)可得,∠1=∠2,
∵AF⊥BC,
∴∠BPG=∠BFG=90°,
在△BPG和△BFG中,
,
∴△BPG≌△BFG(AAS),
∴PG=GF,
又∵矩形GFNM中,GF=MN,
∴PG=NM,
∵AC⊥CD,CD∥AB,
∴∠BAC=90°=∠AFB,
即∠PAG+∠ABF=∠NCM+∠ABC=90°,
∴∠PAG=∠NCM,
在△PAG和△NCM中,
,
∴△PAG≌△NCM(AAS),
∴AG=CM,
∵∠1=∠2,∠BAH=∠BFG,
∴∠AHG=∠FGB=∠AGH,
∴AG=AH,
∴AH=MC.
此题考查全等三角形的判定与性质,平行四边形的性质,解题关键在于掌握判定定理和作辅助线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
首先解每个不等式,把解集在数轴上表示出来即可得到不等式组的解集,然后确定解集中的整数,便可得到整数解得个数.
【详解】
,
解不等式得:,
解不等式得:,
不等式的解集是,
则整数解是:,共个整数解.
故答案为:.
本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.
20、如果两个三角形的面积相等,那么是全等三角形
【解析】
首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.
【详解】
命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.
故答案为:如果两个三角形的面积相等,那么是全等三角形
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
21、
【解析】
由菱形的对角线互相平分且垂直可知菱形的面积等于小三角形面积的四倍可求出DO,根据勾股定理可求出AD,然后再根据直角三角形中斜边的中线等于斜边的一半,求解即可.
【详解】
解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4 ,
∴AO=2,DO=,∠AOD=90°,
∴AD=3,
∵E为AD的中点,
∴OE的长为:AD=.
故答案为: .
菱形的对角线的性质、勾股定理、直角三角形的性质都是本题的考点,根据题意求出DO和AD的长是解题的关键.
22、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵S甲2=4,S乙2=16,
∴S甲2=4<S乙2=16,
∴成绩稳定的是甲,
故答案为:甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
23、
【解析】
【分析】由于已知方程的一根,并且一次项系数也已知,根据两根之和公式可以求出方程的另一根.
【详解】设方程的另一根为x1,由x1+2-=4,得x1=2+.
故答案为2+.
【点睛】根据方程中各系数的已知情况,合理选择根与系数的关系式是解决此类题目的关键.
二、解答题(本大题共3个小题,共30分)
24、原式=
【解析】
分析:首先将分式的分子和分母进行因式分解,然后根据分式的除法和减法计算法则进行化简,最后将a的值代入化简后的式子得出答案.
详解:解:===,
当时,=.
点睛:本题主要考查的是分式的化简求值问题,属于基础题型.在分式化简的时候一定要注意因式分解的方法.
25、(1)作图见解析;(2)3,1 .
【解析】
(1)作边AB的中垂线,交AB于D,过点D作DE⊥BC,垂足为E,连接DE即可.
(2)根据三角形的中位线定理直接得出DE的长,再根据直角三角形斜边上的中线等于斜边的一半,求出CD.
【详解】
(1)如图.
(2)∵DE是△ABC的中位线,
∴DE=AC,
∵AC=6,
∴DE=3,
∵AB=10,CD是Rt△斜边上的中线等于斜边的一半,
∴CD=1,
故答案为3,1.
本题考查了基本作图,以及三角形的中位线定理、勾股定理,是基础知识要熟练掌握.
26、
【解析】
(1)先化简二次根式,再加减;(2)根据平方差公式进行计算.
【详解】
(1);
(2)
考核知识点:二次根式的运算.掌握运算法则是关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均分
方差
标准差
甲
80
4
2
乙
80
16
4
相关试卷
这是一份浙江省金华、丽水市2023-2024学年数学九年级第一学期期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,则的值为,已知点P的坐标为,若两个相似三角形的面积之比为1等内容,欢迎下载使用。
这是一份浙江省丽水市莲都区2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,函数与,在中,=90〫,,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年浙江省金华、丽水市八上数学期末调研试题含答案,共7页。试卷主要包含了计算,估计的运算结果应在,已知,则a+b+c的值是等内容,欢迎下载使用。