开学活动
搜索
    上传资料 赚现金

    2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】

    2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】第1页
    2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】第2页
    2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份2025届浙江省金华市兰溪二中学数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是( )
    A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y1
    2、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
    ①四边形A2B2C2D2是矩形;
    ②四边形A4B4C4D4是菱形;
    ③四边形A5B5C5D5的周长是
    ④四边形AnBnCnDn的面积是
    A.①②③B.②③④C.①②D.②③
    3、(4分)如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为( )
    A.8B.9C.5+D.5+
    4、(4分)矩形 与矩形 如图放置,点 共线,点共线,连接 ,取的中点 ,连接 .若 ,则的长为
    A.B.C.D.
    5、(4分)某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有( )
    A.152块B.153块C.154块D.155块
    6、(4分)将一元二次方程配方后,原方程可化为( )
    A.B.C.D.
    7、(4分)下列计算正确的是( )
    A.+=B.÷=
    C.2×3=6D.﹣2=﹣
    8、(4分)如图,直角坐标系中有两点A(5,0),B(0,4),A,B两点间的距离为( )
    A.3B.7C.D.9
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.
    10、(4分)二次根式有意义的条件是__________.
    11、(4分)如图在中,,,的平分线交于,交的延长线于,则的值等于_________.
    12、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
    13、(4分)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q 分别在边OB、OA上,则MP+PQ+QN的最小值是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形,AC、DE相交于点O.
    (1)求证:四边形ADCE是矩形.
    (2)若∠AOE=60°,AE=4,求矩形ADCE对角线的长.
    15、(8分)某学习小组10名学生的某次数学测验成绩统计表如下:
    (1)填空:x = ;此学习小组10名学生成绩的众数是 ;
    (2)求此学习小组的数学平均成绩.
    16、(8分)成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用
    (1)如果超市在进价的基础上提高5%作为售价,请你计算说明超市是否亏本;
    (2)如果该水果的利润率不得低于14%,那么该水果的售价至少为多少元?
    17、(10分)如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0), B(9,0),直线y=kx+b经过B、D两点.
    (1)求直线y=kx+b的表达式;
    (2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.
    18、(10分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.
    (1)求证:DP=CG;
    (2)判断△PQR的形状,请说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在,,,,中任意取一个数,取到无理数的概率是___________.
    20、(4分)表①给出了直线l1上部分(x,y)坐标值,表②给出了直线l2上部分点(x,y)坐标值,那么直线l1和直线l2的交点坐标为_______.
    21、(4分)如图,双曲线()与直线()的交点的横坐标为,2,那么当时,_______(填“”、“”或“”).
    22、(4分)如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:__________________.
    23、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)2017年5月5日,国产大飞机C919首飞圆满成功.C919是中国首款按照最新国际适航标准,具有自主知识产权的干线民用飞机,于2008年开始研制,是China的首字母,第一个“9”的寓意是天长地久,“19”代表的是中国首款中型客机最大载客量为190座,截止2018年2月底,C919大型客机的国内外用户达到28家,订单总数超过800架,表1是其中20家客户的订单情况
    表1:
    根据表1所提供的数据补全表2
    表2:
    这20个数据的中位数为 ,众数为 。
    25、(10分)在等腰三角形ABC中,已知AB=AC=5cm,BC=6cm,AD⊥BC于D.求:底边BC上的高AD的长.
    26、(12分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
    (1)求A型空调和B型空调每台各需多少元;
    (2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
    (3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.
    【详解】
    ∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.
    ∵﹣1<1<3,∴y1<0<y1.
    故选B.
    本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.
    2、C
    【解析】
    首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
    【详解】
    ①连接A1C1,B1D1.
    ∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
    ∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
    ∴A1D1∥B1C1,A1B1∥C1D1,
    ∴四边形A1B1C1D1是平行四边形;
    ∵AC丄BD,∴四边形A1B1C1D1是矩形,
    ∴B1D1=A1C1(矩形的两条对角线相等);
    ∴A2D2=C2D2=C2B2=B2A2(中位线定理),
    ∴四边形A2B2C2D2是菱形;
    故①错误;
    ②由①知,四边形A2B2C2D2是菱形;
    ∴根据中位线定理知,四边形A4B4C4D4是菱形;
    故②正确;
    ③根据中位线的性质易知,A5B5=
    ∴四边形A5B5C5D5的周长是2×;
    故③正确;
    ④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
    ∴S四边形ABCD=ab÷2;
    由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
    四边形AnBnCnDn的面积是.
    故④正确;
    综上所述,②③④正确.
    故选C.
    考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
    3、C
    【解析】
    过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
    【详解】
    过点C作CM⊥AB,垂足为M,
    在Rt△AMC中,
    ∵∠A=60°,AC=4,
    ∴AM=2,MC=2,
    ∴BM=AB-AM=3,
    在Rt△BMC中,
    BC===,
    ∵DE是线段AC的垂直平分线,
    ∴AD=DC,
    ∵∠A=60°,
    ∴△ADC等边三角形,
    ∴CD=AD=AC=4,
    ∴△BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.
    故答案选C.
    本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
    4、A
    【解析】
    延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.
    【详解】
    解:如图,延长GH交AD于点P,
    ∵四边形ABCD和四边形CEFG都是矩形,
    ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=3、GF=CE=1,
    ∴AD∥GF,
    ∴∠GFH=∠PAH,
    又∵H是AF的中点,
    ∴AH=FH,
    在△APH和△FGH中,

    ∴△APH≌△FGH(ASA),
    ∴AP=GF=1,GH=PH=PG,
    ∴PD=AD-AP=3-1=2,
    ∵CG=EF=3、CD=1,
    ∴DG=2,△DGP是等腰直角三角形,
    则GH=PG= ×
    故选:A.
    本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.
    5、C
    【解析】
    根据题意设出未知数,列出相应的不等式,从而可以解答本题.
    【详解】
    解:设这批手表有x块,
    解得,
    这批手表至少有154块,
    故选C.
    本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.
    6、C
    【解析】
    根据配方法对进行计算,即可解答本题.
    【详解】
    解:∵x2﹣4x+1=0,
    ∴(x﹣2)2﹣4+1=0,
    ∴(x﹣2)2=3,
    故选:C.
    本题考查解一元二次方程﹣配方法,解答本题的关键是明确解一元二次方程的方法.
    7、D
    【解析】
    直接利用二次根式混合运算法则计算得出答案.
    【详解】
    解:A、+,无法计算,故此选项错误;
    B、÷=,故此选项错误;
    C、2×3=18,故此选项错误;
    D、﹣2=﹣,正确.
    故选D.
    此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.
    8、C
    【解析】
    根据勾股定理求解即可.
    【详解】
    ∵A(5,0),B(0,4),
    ∴OA=5,OB=4,
    ∴AB===,
    故选:C.
    本题考查了勾股定理,掌握知识点是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    直接利用菱形的性质得出BO=3,CO=4,AC⊥BD,进而利用勾股定理以及直角三角形面积求法得出答案.
    【详解】
    ∵四边形ABCD为菱形,
    ∴AC⊥BD,OB=OD=BD=3,OA=OC=AC=4,
    在Rt△OBC中,∵OB=3,OC=4,
    ∴BC=,
    ∵OE⊥BC,
    ∴OE•BC=OB•OC,
    ∴OE=.
    10、
    【解析】
    根据被开方式大于零列式求解即可.
    【详解】
    由题意得
    x-3>0,
    ∴x>3.
    故答案为:x>3.
    本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
    11、4
    【解析】
    根据平行四边形的性质得到∠F=∠DCF,根据角平分线的性质得到BF=BC=8,从而解得答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,AD=BC=8,CD=AB=6,
    ∴∠F=∠DCF,
    ∵∠C平分线为CF,
    ∴∠FCB=∠DCF,
    ∴∠F=∠FCB,
    ∴BF=BC=8,
    同理:DE=CD=6,
    ∴AF=BF-AB=2,AE=AD-DE=2,
    ∴AE+AF=4;
    本题考查平行四边形的性质和角平分线的性质,解题的关键是掌握平行四边形的性质和角平分线的性质.
    12、2
    【解析】
    先根据矩形的性质,推理得到∠OBF=30°,,再根据含30°角的性质可得OF=BF ,利用勾股定理即可得到BF的长.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴OA=OD,
    ∴∠OAD=∠ODA=30°,
    ∵EF⊥BD,
    ∴∠BOF=90°,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,,
    ∴∠OBF=∠ODA =30°,
    ∴OF=BF.
    又∵Rt△BOF中,
    BF2-OF2=OB2,
    ∴BF2-BF2= ,
    ∴BF=2.
    本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.
    13、2
    【解析】
    作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.
    【详解】
    作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:
    连接M′N′,即为MP+PQ+QN的最小值.
    根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,
    ∴△ONN′为等边三角形,△OMM′为等边三角形,
    ∴∠N′OM′=90°,
    ∴在Rt△M′ON′中,
    M′N′=.
    故答案为:2.
    本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)证明见解析;(2)1.
    【解析】
    分析:(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.
    (2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.
    详解:(1)∵四边形ABDE是平行四边形,
    ∴AB=DE,
    又∵AB=AC,
    ∴DE=AC.
    ∵AB=AC,D为BC中点,
    ∴∠ADC=90°,
    又∵D为BC中点,
    ∴CD=BD.
    ∴CD∥AE,CD=AE.
    ∴四边形AECD是平行四边形,
    又∴∠ADC=90°,
    ∴四边形ADCE是矩形.
    (2)∵四边形ADCE是矩形,
    ∴AO=EO,
    ∴△AOE为等边三角形,
    ∴AO=4,
    故AC=1.
    点睛:本题考查了矩形的判定和性质,二者结合是常见的出题方式,要注意灵活运用等边三角形的性质、等腰三角形的性质和三角形中位线的性质.
    15、(1)2,90;(2)79分
    【解析】
    (1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;
    ②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;
    (2)根据平均数的计算公式分别进行计算即可.
    【详解】
    解:(1)①∵共有10名学生,
    ∴x=10-1-3-4=2;
    ②∵90出现了4次,出现的次数最多,
    ∴此学习小组10名学生成绩的众数是90;
    故答案为2,90;
    (2)此学习小组的数学平均成绩是:
    (分)
    此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.
    16、(1)如果超市在进价的基础上提高5%作为售价,则亏本1元;(2)该水果的售价至少为2.1元/千克.
    【解析】
    (1)根据利润=销售收入-成本,即可求出结论;
    (2)根据利润=销售收入-成本结合该水果的利润率不得低于11%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.
    【详解】
    (1)2×(1+5%)×200×(1﹣5%)﹣100=﹣1(元).
    答:如果超市在进价的基础上提高5%作为售价,则亏本1元.
    (2)设该水果的售价为x元/千克,
    根据题意得:200×(1﹣5%)x﹣200×2≥200×2×11%,
    解得:x≥2.1.
    答:该水果的售价至少为2.1元/千克.
    本题考查了一元一次不等式的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据各数量间的关系,正确列出一元一次不等式.
    17、(1);(2)或.
    【解析】
    试题分析:(1)求出B, D两点坐标,根据点在直线上点的坐标满足方程的关系,将B, D两点坐标代入y=kx+b中,得到方程组,解之即得直线y=kx+b的表达式.
    (2)将直线平移,平移后的解析式为,当它左移超过点A或右移超过点C时,它与矩形没有公共点 .因此,只要将A, C两点坐标分别代入中求出的值即可求得b的取值范围或.
    (1)∵ A(1,0), B(9,0),AD=1.
    ∴D(1,1).
    将B, D两点坐标代入y=kx+b中,
    得,解得.
    ∴直线的表达式为.
    (2)或.
    考点:1.直线上点的坐标与方程的关系;2.平移的性质.
    18、(1)证明见解析;(2)△PQR为等腰三角形,理由见解析.
    【解析】
    (1)正方形对角线AC是对角的角平分线,可以证明△ADP≌△DCG,即可求证DP=CG.
    (2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.
    【详解】
    (1)证明:在正方形ABCD中,
    AD=CD,∠ADP=∠DCG=90°,
    ∠CDG+∠ADH=90°,
    ∵DH⊥AP,∴∠DAH+∠ADH=90°,
    ∴∠CDG=∠DAH,
    ∴△ADP≌△DCG,
    ∵DP,CG为全等三角形的对应边,
    ∴DP=CG.
    (2)△PQR为等腰三角形.
    ∵∠QPR=∠DPA,∠PQR=∠CQE,CQ=DP,由(1)的结论可知
    ∴CQ=CG,∵∠QCE=∠GCE,CE=CE,
    ∴△CEQ≌△CEG,即∠CQE=∠CGE,
    ∴∠PQR=∠CGE,
    ∵∠QPR=∠DPA,
    ∴∠PQR=∠QPR,
    所以△PQR为等腰三角形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.
    【详解】
    解:∵在,,,,中无理数只有这1个数,
    ∴任取一个数,取到无理数的概率是,
    故答案为:.
    此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.
    20、(2,-1)
    【解析】
    【分析】通过观察直线l1上和l2上部分点的坐标值,会发现当x=2时,y的值都是-1,即两直线都经过点(2,-1),即交点.
    【详解】通过观察表格可知,直线l1和直线l2都经过点(2,-1),
    所以直线l1和直线l2交点坐标为(2,-1),
    故答案为:(2,-1)
    【点睛】本题考查了两直线相交的问题,仔细观察图表数据,判断出两直线的交点坐标是解题的关键.
    21、>
    【解析】
    观察x=3的图象的位置,即可解决问题.
    【详解】
    解:观察图象可知,x=3时,反比例函数图象在一次函数的图象的上面,所以y1>y1.
    故答案为:>.
    本题考查反比例函数与一次函数的交点问题,正确认识图形是解题的关键,学会利用图象由自变量的取值确定函数值的大小,属于中考常考题型.
    22、∠A=90°,AD=AF(答案不唯一)
    【解析】
    试题解析:要证明四边形ADEF为正方形,
    则要求其四边相等,AB=AC,点D、E、F分别是△ABC的边AB、BC、AC的中点,
    则得其为平行四边形,
    且有一角为直角,
    则在平行四边形的基础上得到正方形.
    故答案为△ABC为等腰直角三角形,且AB=AC,∠A=90°(此题答案不唯一).
    23、(3,0)
    【解析】
    试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)
    考点:关于y轴对称的点的坐标.
    二、解答题(本大题共3个小题,共30分)
    24、补全表2见解析;中位数为1,众数为1.
    【解析】
    根据提供的数据体统计出1架和45架的频数,填入表格即可;根据中位数众数的意义,分别找出出现次数最多的数,和第10、11个数的平均数,就可得出众数、中位数.
    【详解】
    解:根据表1所提供的数据补全表2,如图所示:
    这1个数据位于第10、11位的两个数都是1,因此中位数是1;出现次数最多的是1,因此众数是1,
    故答案为:1,1.
    考查频率分布表、中位数、众数的意义和求法,将数据从大到小排序后,找出处于中间位置的一个数或两个数的平均数即为中位数,出现次数最多的即为众数.
    25、AD=4cm
    【解析】
    根据等腰三角形三线合一的性质可得BD=BC=3cm,在Rt△ABD中,利用勾股定理即可求出AD的长.
    【详解】
    ∵在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC于D
    ∴BD=BC=3cm
    ∴AD=
    本题考查利用等腰三角形的性质与勾股定理求解,熟练掌握等腰三角形三线合一的性质是解题的关键.
    26、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
    【解析】
    分析:(1)根据题意可以列出相应的方程组,从而可以解答本题;
    (2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;
    (3)根据题意和(2)中的结果,可以解答本题.
    详解:(1)设A型空调和B型空调每台各需x元、y元,
    ,解得,,
    答:A型空调和B型空调每台各需9000元、6000元;
    (2)设购买A型空调a台,则购买B型空调(30-a)台,

    解得,10≤a≤12,
    ∴a=10、11、12,共有三种采购方案,
    方案一:采购A型空调10台,B型空调20台,
    方案二:采购A型空调11台,B型空调19台,
    方案三:采购A型空调12台,B型空调18台;
    (3)设总费用为w元,
    w=9000a+6000(30-a)=3000a+180000,
    ∴当a=10时,w取得最小值,此时w=210000,
    即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.
    点睛:本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.
    题号





    总分
    得分
    成绩(分)
    60
    70
    80
    90
    人数(人)
    1
    3
    x
    4
    客户
    订单(架)
    客户
    订单(架)
    中国国际航空
    20
    工银金融租赁有限公司
    45
    中国东方航空
    20
    平安国际融资租赁公司
    50
    中国南方航空
    20
    交银金牌租赁有限公司
    30
    海南航空
    20
    中国飞机租赁有限公司
    20
    四川航空
    15
    中银航空租赁私人有限公司
    20
    河北航空
    20
    农银金融租赁有限公司
    45
    幸福航空
    20
    建信金融租赁股份有限公司
    50
    国银金融租赁有限公司
    15
    招银金融租赁有限公司
    30
    美国通用租赁公司
    20
    兴业金融租赁公司
    20
    泰国都市航空
    10
    德国普仁航空公司
    7
    订单(架)
    7
    10
    15
    20
    30
    45
    50
    订单(架)
    1
    1
    2
    2
    2

    相关试卷

    2025届浙江省杭州市景芳中学数学九上开学学业水平测试试题【含答案】:

    这是一份2025届浙江省杭州市景芳中学数学九上开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届北京大兴北臧村中学数学九上开学学业水平测试模拟试题【含答案】:

    这是一份2025届北京大兴北臧村中学数学九上开学学业水平测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年浙江省金华市婺城区第四中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年浙江省金华市婺城区第四中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map