2025届浙江省衢州市初三数数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果,那么下列各式正确的是( )
A.a+5<b+5B.5a<5bC.a﹣5<b﹣5D.
2、(4分)在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是( )
A.(3,﹣1)B.(-1,3)C.(-3,1)D.(-2,﹣3)
3、(4分)分式方程的解为( )
A.B.C.D.
4、(4分)已知下面四个方程: +3x=9;+1=1;=1;=1.其中,无理方程的个数是( )
A.1B.2C.3D.4
5、(4分)在下列各图中,可以由题目条件得出∠1=∠2的图形个数为( )
A.1B.2C.3D.4
6、(4分)已知反比例函数的图象上有两点A(a-3,2b),B(a,b-2),且a<0,则的取值范围是( )
A.B.C.D.
7、(4分)一个直角三角形的两边长分别为5和12,则第三边的长为( )
A.13B.14C.D.13或
8、(4分)在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①、两地相距30千米;②甲的速度为15千米/时;③点的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时. 正确的个数为( )
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某n边形的每个外角都等于它相邻内角的,则n=_____.
10、(4分)已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____
11、(4分)因式分解: .
12、(4分)命题“对顶角相等”的逆命题的题设是___________.
13、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)因式分解
(2)解不等式组
15、(8分)校团委决定对甲、乙、丙三位候选人进行民主投票、笔试、面试考核,从中推选一名担任学生会主席.已知参加民主投票的学生为200名,每人当且仅当推荐一名候选人,民主投票结果如下扇形统计图所示,笔试和面试的成绩如下统计表所示.
(1)甲、乙、丙的得票数依次是______、______、______;
(2)若民主投票得一票记1分,学校将民主投票、笔试、面试三项得分按3:4:3的比例确定三名候选人的考核成绩,成绩最高当选,请通过计算确定谁当选.
16、(8分)解不等式组:,并把解集在数轴上表示出来.
17、(10分)遂宁骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,某车行经营的A型车去年2月份销售总额为3万元,今年经过改造升级后A型车每辆销售价比去年增加300元,若今年2月份与去年2月份卖出的A型车数量相同,则今年2月份A型车销售总额将比去年2月份销售总额增加20%.
(1)求今年2月份A型车每辆销售价多少元?
(2)该车行计划今年3月份新进一批A型车和B型车共40辆,且B型车的进货数量不超过A型车数量的2倍,A、B两种型号车的进货和销售价格如表,问应如何进货才能使这批车获利最多?
18、(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.
(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;
(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 ________
20、(4分)已知y与x﹣1成正比例,当x=3时,y=4;那么当x=﹣3时,y=_____.
21、(4分)飞机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s60t1.5t2,则飞机着陆后滑行直到停下来滑行了__________米.
22、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.
23、(4分)如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)综合与探究
如图,在平面直角坐标系中,直线y=x-3与坐标轴交于A,B两点.
(1)求A,B两点的坐标;
(2)以AB为边在第四象限内作等边三角形ABC,求△ABC的面积;
(3)在平面内是否存在点M,使得以M,O,A,B为顶点的四边形是平行四边形,若存在,直接写出M点的坐标:若不存在,说明理由.
25、(10分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
26、(12分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:
(1)
(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据不等式的性质逐一进行分析判断即可得.
【详解】
∵,
∴a+5>b+5,故A选项错误,
5a>5b,故B选项错误,
a-5>b-5,故C选项错误,
,故D选项正确,
故选D.
本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
2、B
【解析】
根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.
【详解】
解:由点M到x轴的距离是3,到y轴的距离是1,得
|y|=3,|x|=1,
由点M在第二象限,得
x=-1,y=3,
则点M的坐标是(-1,3),
故选:B.
本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征. 熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
3、C
【解析】
观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】
方程的两边同乘x(x-1),得
1x-1=4x,
解得x=-1.
检验:当x=-1时,x(x-1)≠2.
∴原方程的解为:x=-1.
故选C.
本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.
4、A
【解析】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.
【详解】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,
故选:A.
本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..
5、C
【解析】
根据等腰三角形的性质对第一个图形进行判断,根据对顶角相等对第1个图进行判断;根据平行线的性质和对顶角相等对第3个图进行判断;根据三角形外角性质对第4个图进行判断.
【详解】
解:在第一个图中,
∵AB=AC,
∴∠1=∠1;
在第二个图中,
∠1=∠1;
在第三个图中,
∵a∥b,
∴∠1=∠3,
而∠1=∠3,
∴∠1=∠1;
在第四个图中,∠1>∠1.
故选:C.
本题考查了等腰三角形的性质,平行线的性质,对顶角相等,正确的识别图形是解题的关键.
6、C
【解析】
由a<0可得a-3<0,再根据反比例函数的图象上有两点A(a-3,2b),B(a,b-2),继而可得2b<0且b-2<0,从而可得b<0,再由2b=,b-2=,得出a=,a=,继而根据a<0,可得,由此结合b<0即可求得答案.
【详解】
∵a<0,∴a-3<0,
∵反比例函数的图象上有两点A(a-3,2b),B(a,b-2),
∴2b=,b-2=,
∴2b<0且b-2<0,∴b<0,
∵2b=,b-2=,
∴a-3=,a=,
即a=,a=,
又a<0,
∴,
∴-1∴-1故选C.
本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,解不等式组等知识,熟练掌握相关知识是解题的关键.
7、D
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
当12和5均为直角边时,第三边==13;
当12为斜边,5为直角边,则第三边==,
故第三边的长为13或.
故选D.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
8、C
【解析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.
【详解】
解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=
由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为(,20),故③正确.
当两人相遇前相距10km时,
30x+15x=30-10
x=,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
解得x=
∴④错误.
故选C.
本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据每个外角都等于相邻内角的,并且外角与相邻的内角互补,就可求出外角的度数;根据外角度数就可求得边数.
【详解】
解:因为多边形的每个外角和它相邻内角的和为180°,
又因为每个外角都等于它相邻内角的,
所以外角度数为180°×=36°.
∵多边形的外角和为360°,
所以n=360÷36=1.
故答案为:1.
本题考查多边形的内角与外角关系,以及多边形的外角和为360°.
10、-2
【解析】
由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【详解】
由已知得:,
解得:-<k<2.
∵k为整数,
∴k=-2.
故答案为:-2.
本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.
11、
【解析】
解:=;
故答案为
12、两个角相等
【解析】
交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
【详解】
解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
题设是:两个角相等
故答案为:两个角相等.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
13、
【解析】
试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
∵∠ACG=∠AGC,
∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
∴∠BAC=∠CAF-∠BAF=30°,
在Rt△ABC中,AC=2BC=2AD=2,
由勾股定理,AB=.
【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
三、解答题(本大题共5个小题,共48分)
14、(1);(2).
【解析】
(1)对原式进行整理再利用平方差公式分解因式得出即可.
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
(1)解:原式
(2)解1式得:
解2式得:
∴
此题主要考查了公式法分解因式及解不等式组,熟练应用平方差公式与掌握解不等式的口诀是解题关键.
15、(1)50、80、70;(2)乙的平均成绩最高,应录用乙.
【解析】
(1)分别用总票数乘以甲,乙,丙各自得票数的百分比即可得出各自的得票数;
(2)按照加权平均数的求法 分别求出甲,乙,丙的成绩,选出成绩最高者即可.
【详解】
(1)甲的得票数为:200×25%=50(票),
乙的得票数为:200×40%=80(票),
丙的得票数为:200×35%=70(票),
(2)甲的平均成绩:
;
乙的平均成绩:
;
丙的平均成绩:
;
∵78.5>76>73.8,
∴乙的平均成绩最高,应录用乙.
本题主要考查加权平均数和扇形统计图,掌握加权平均数的求法是解题的关键.
16、﹣1<x≤3
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:
.
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.
17、(1)今年的销售价为1800元;(2)购进A型车14辆,B型车26辆,获利最多.
【解析】
(1)设去年2月份A型车每辆的售价为x元,则今年2月份A型车每辆的售价为(x+300)元,然后依据今年2月份与去年2月份卖出的A型车数量相同列方程求解即可;
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,然后列出W与m的函数关系式,然后依据一次函数的性质求解即可.
【详解】
解:(1)设去年2月份A型车每辆的售价为x元,
则今年2月份A型车每辆的售价为(x+300)元,
根据题意得:,
解得:x=1500,
经检验,x=1500是原方程的解,
则今年的销售价为1500+300=1800元.
(2)设购进A型车m辆,获得的总利润为w元,则购进B型车(40﹣m)辆,
根据题意得:
w=(1800﹣900)m+(2000﹣1000)(40﹣m)=﹣10m+1.
又∵40﹣m≤2m,
∴m≥13.
∵k=﹣100<0,
∴当m=14时,w取最大值.
答:购进A型车14辆,B型车26辆,获利最多.
本题考查了一次函数的应用、分式方程的应用,依据题意列出分式方程、得到W与m的函数关系式是解题的关键.
18、(1);(2)55元
【解析】
(1)分情况讨论,利用待定系数法进行求解即可解题,(2)根据收支平衡的含义建立收支之间的等量关系进行求解是解题关键.
【详解】
解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),
将(40,60),(58,24)代入y=kx+b,得:
,解得:,
∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;
当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+1.
综上所述:y与x之间的函数关系式为.
(2)设当天的销售价为x元时,可出现收支平衡.
当40≤x≤58时,依题意,得:
(x﹣40)(﹣2x+140)=100×3+150,
解得:x1=x2=55;
当57<x≤71时,依题意,得:
(x﹣40)(﹣x+1)=100×3+150,
此方程无解.
答:当天的销售价为55元时,可出现收支平衡.
本题考查了用待定系数法求解一次函数,一次函数的实际应用,中等难度,熟悉待定系数法,根据题意建立等量关系是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(0,0)
【解析】
解:将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(1-1,2-2),即(0,0).
故答案填:(0,0).
点评:此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
20、﹣8
【解析】
首先根据题意设出关系式:y=k(x-1),再利用待定系数法把x=3,y=4代入,可得到k的值,再把k的值代入所设的关系式中,然后把x=-3代入即可求得答案.
【详解】
∵y与x-1成正比例,
∴关系式设为:y=k(x-1),
∵x=3时,y=4,
∴4=k(3-1),
解得:k=2,
∴y与x的函数关系式为:y=2(x-1)=2x-2,
当x=-3时,y=-6-2=-8,
故答案为:-8.
本题考查了待定系数法求一次函数解析式,关键是设出关系式,代入x,y的值求k.
21、1
【解析】
将化为顶点式,即可求得s的最大值.
【详解】
解:,
则当时,取得最大值,此时,
故飞机着陆后滑行到停下来滑行的距离为:.
故答案为:1.
本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.
22、4
【解析】
第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.
【详解】
根据题意:第一个正方形的边长为64cm;
第二个正方形的边长为:64×=32cm;
第三个正方形的边长为:64×()2cm,
…
此后,每一个正方形的边长是上一个正方形的边长的 ,
所以第9个正方形的边长为64×()9-1=4cm,
故答案为4
本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
23、24.
【解析】
试题分析: ∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB=∠DAB,∠PBA=∠ABC,∴∠PAB+∠PBA=(∠DAB+∠CBA)=90°,∴∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AB∥CD,∴∠PAB=∠DPA,∴∠DAP=∠DPA,∴AD=DP=5,同理:PC=CB=5,
即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24.
考点:1平行四边形;2角平分线性质;3勾股定理;4等腰三角形.
二、解答题(本大题共3个小题,共30分)
24、 (1) A(0,-3),B(4,0);(2) ;(3)存在,(-4,-3)或(4,3)或(4,-3).
【解析】
(1)当x=0时,y=-3,当y=0时,x=4,可求A,B两点的坐标;
(2)由勾股定理可求AB的长,即可求△ABC的面积;
(3)分两种情况讨论,由平行四边形的性质可求点M坐标.
【详解】
(1)在中,令x=0,得y=-3
令y=0,得x=4
∴A(0,-3),B(4,0)
(2)由(1)知:OA=3,0B=4
在RtΔAOB中,由勾股定理得:AB=5.
如图:过C作CD⊥AB于点D,
则AD=BD=
又AC=AB=5.
在Rt△ADC中,
∴
(3) 若AB为边时,
∵以M,O,A,B为顶点的四边形是平行四边形
∴MO∥AB,MO=AB=5,
当点M在OB下方时,AM=BO=4,AM∥OB
∴点M(-4,-3)
当点M在OB上方时,OA=BM=3,OA∥BM
∴点M(4,3)
若AB为对角线时,
∵以M,O,A,B为顶点的四边形是平行四边形
∴AM∥OB,BM∥OA,
∴点M(4,-3)
综上所述:点M坐标为(-4,-3),(4,3),(4,-3).
考查了一次函数的应用,平行四边形的性质,等边三角形的性质,勾股定理的应用,解决本题的关键是分类讨论思想的应用.
25、(1),;(2)该镜片的焦距为.
【解析】
(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】
(1)根据题意,设与的函数表达式为
把,代入中,得
∴与的函数表达式为.
(2)当时,
答:该镜片的焦距为.
考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
26、(1)见详解;(2)见详解.
【解析】
(1)证明△AED≌△BFA即可说明DE=AF;
(2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.
【详解】
证明:(1)∵四边形ABCD是正方形,
∴AD=AB,∠DAE+∠BAF=90°.
∵∠ABF+∠BAF=90°,
∴∠DAE=∠ABF.
又∠AED=∠BFA.
∴△AED≌△BFA(AAS).
∴DE=AF;
(2)∵△AED≌△BFA,
∴AE=BF.
∵AF-AE=EF,
∴AF-BF=EF.
本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
笔试
78
80
85
面试
92
75
70
A型车
B型车
进货价格(元/辆)
900
1000
销售价格(元/辆)
今年的销售价格
2000
眼镜片度数(度)
…
镜片焦距(厘米)
…
2025届浙江省嘉兴九上数学开学学业质量监测模拟试题【含答案】: 这是一份2025届浙江省嘉兴九上数学开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届天津河北区数学九上开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届北京市九级数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。