|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】
    立即下载
    加入资料篮
    2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】01
    2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】02
    2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】

    展开
    这是一份2025届浙江省绍兴市柯桥区杨汛桥镇中学数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,四象限B.第一,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,点在反比例函数的图象上,点在反比例函数的图象上,轴,连接,过点作轴于点,交于点,若,则的值为( )
    A.﹣4B.﹣6C.﹣8D.﹣9
    2、(4分)一次函数的图像如图所示,则的取值范围是( )
    A.B.C.D.
    3、(4分)如图,在矩形中,对角线和相交于点,点分别是的中点.若,则的周长为( )
    A.6B.C.D.
    4、(4分)下列曲线中,不能表示是的函数的是( )
    A.B.C.D.
    5、(4分)一条直线y=kx+b,其中k+b=﹣5、kb=6,那么该直线经过
    A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限
    6、(4分)点( )在函数y=2x-1的图象上.
    A.(1,3)B.(−2.5,4)C.(−1,0)D.(3,5)
    7、(4分)如图, 中, ,,则的度数为( )

    A.B.C.D.
    8、(4分)将正比例函数y=2x的图象向下平移2个单位长度,所得图象对应的函数解析式是( )
    A.y=2x-1B.y=2x+2
    C.y=2x-2D.y=2x+1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)定义运算“*”为:a*b,若3*m=-,则m=______.
    10、(4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____
    11、(4分)在学校的社会实践活动中,一批学生协助搬运初一、二两个年级的图书,初一年级需要搬运的图书数量是初二年级需要搬运的图书数量的两倍.上午全部学生在初一年级搬运,下午一半的学生仍然留在初一年级(上下午的搬运时间相等)搬运,到放学时刚好把初一年级的图书搬运完.下午另一半的学生去初二年级搬运图书,到放学时还剩下一小部分未搬运,最后由三个学生再用一整天的时间刚好搬运完.如果这批学生每人每天搬运的效率是相同的,则这批学生共有人数为______.
    12、(4分)命题“对角线相等的平行四边形是矩形”的逆命题为________________________
    13、(4分)某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:
    则全体参赛选手年龄的中位数是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(题文)如图,四边形ABCD中,AB//CD,AC平分∠BAD,CE//AD交AB于E.
    求证:四边形AECD是菱形.
    15、(8分)垫球是排球运动的一项重要技术.下列图表中的数据分别是甲、乙、内三个运动员十次垫球测试的成绩,规则为每次测试连续垫球10个,每垫球到位1个记1分.
    (1)写出运动员甲测试成绩的众数和中位数;
    (2)试从平均数和方差两个角度综合分析,若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、s丙2=0.81)
    16、(8分)如图,一次函数的图像过点和点,以线段为边在第一象限内作等腰直角△ABC,使
    (1)求一次函数的解析式;
    (2)求出点的坐标
    (3)点是轴上一动点,当最小时,求点的坐标.
    17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
    (1)求k的值;
    (2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
    18、(10分) (1)求不等式组的整数解.
    (2)解方程组:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
    20、(4分)若a=,则=_____.
    21、(4分)已知,则的值为__________.
    22、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
    23、(4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.
    (1)求购买1块电子白板和一台笔记本电脑各需多少元?
    (2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?
    (3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?
    25、(10分)(1)把下面的证明补充完整
    已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.
    证明:∵AB∥CD(已知)
    ∴∠BEF+∠DFE=180°(______),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴______,______(______),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),
    ∴∠GEF+∠GFE=×180°=90°(______),
    在△EGF中,∠GEF+∠GFE+∠G=180°(______),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG(______).
    (2)请用文字语言写出(1)所证命题:______.
    26、(12分)已知:如图,在中,,,为外角的平分线,.
    (1)求证:四边形为矩形;
    (2)当与满足什么数量关系时,四边形是正方形?并给予证明
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOC是矩形,四边形OEBF是矩形,得出S矩形AFOC=2,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OC,即OE=3OC,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.
    【详解】
    解:如图,过点作轴于,延长线段,交轴于,
    ∵轴,
    ∴轴,
    ∴四边形是矩形,四边形是矩形,
    ∴,,
    ∴,
    ∵点在函数的图象上,
    ∴,
    同理可得,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    即.
    故选:B.
    本题考查了反比例函数图象上点的坐标特征,矩形的判定和性质,平行线分线段成比例定理,作出辅助线构建矩形,运用反比例函数系数k的几何意义是解题的关键.
    2、D
    【解析】
    根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.
    【详解】
    ∵一次函数的图象过二、四象限,
    ∴k−2<0,
    解得k<2.
    故选:D.
    此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.
    3、A
    【解析】
    由矩形的性质和勾股定理得出AC,再证明EF是△OAD的中位线,由中位线定理得出OE=OF=OA,即可求出△OEF的周长.
    【详解】
    解:∵四边形ABCD是矩形,
    ∵点E、F分别是DO、AO的中点,
    ∴EF是△OAD的中位线,OE=OF=OA=2,
    ∴EF=AD=2,
    ∴△OEF的周长=OE+OF+EF=1.
    故选:A.
    本题考查了矩形的性质、勾股定理、三角形中位线定理、三角形周长的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
    4、D
    【解析】
    在函数图像中,对于的取值范围内的任意一点,通过这点作轴的垂线,则垂线与图像只有一个交点,据此判断即可.
    【详解】
    解:显然A、B、C中,对于自变量的任何值,都有唯一的值与之相对应,是的函数;D中存在x的值,使有二个值与之相对应,则不是的函数;
    故选:D.
    本题主要考查了函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
    5、D
    【解析】
    ∵k+b=-5,kb=6,∴kb是一元二次方程的两个根.
    解得,或.∴k<1,b<1.
    一次函数的图象有四种情况:
    ①当,时,函数的图象经过第一、二、三象限;
    ②当,时,函数的图象经过第一、三、四象限;
    ③当,时,函数的图象经过第一、二、四象限;
    ④当,时,函数的图象经过第二、三、四象限.
    ∴直线y=kx+b经过二、三、四象限.故选D.
    6、D
    【解析】
    将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.
    【详解】
    解:A.当时,,故不在函数的图象上.
    B.当时,,故不在函数的图象上.
    C.当时,,故不在函数的图象上.
    D.当时,,故在函数的图象上.
    故选:D.
    本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
    7、B
    【解析】
    设∠ADE=x,则∠B+19°=x+14°,可用x表示出∠B和∠C,再利用外角的性质可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和求得x,即可得∠DAE的度数.
    【详解】
    解:设∠ADE=x,且∠BAD=19°,∠EDC=14°,
    ∴∠B+19°=x+14°,
    ∴∠B=x-5°,
    ∵AB=AC,
    ∴∠C=∠B=x-5°,
    ∴∠DEA=∠C+∠EDC=x-5°+14°=x+9°,
    ∵AD=DE,
    ∴∠DEA=∠DAE=x+9°,
    在△ADE中,由三角形内角和定理可得
    x+ x+9°+ x+9°=180°,
    解得x=54°,即∠ADE=54°,
    ∴∠DAE=63°
    故选:B.
    本题考查了等腰三角形的性质以及三角形的外角的性质,用∠ADE表示出∠DAE和∠DEA是解题的关键.
    8、C
    【解析】
    根据“上加下减”的原则求解即可.
    【详解】
    将正比例函数y=1x的图象向下平移1个单位长度,所得图象对应的函数解析式是y=1x-1.
    故选C.
    本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、—2
    【解析】
    试题分析:根据定义运算“*”:a*b,即可得方程,在解方程即可得到结果.
    解:由题意得,解得.
    考点:新定义运算
    点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.
    10、()1.
    【解析】
    首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=BC=1,∠B=90°,
    ∴AC2=12+12,AC=;
    同理可求:AE=()2,HE=()3…,
    ∴第n个正方形的边长an=()n-1,
    ∴第2016个正方形的边长为()1,
    故答案为()1.
    本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.
    11、8
    【解析】
    设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,根据题意的等量关系建立方程组求出其解即可.
    【详解】
    解:设二年级需要搬运的图书为a本,则一年级搬运的图书为2a本,这批学生有x人,每人每天的搬运效率为m,由题意得:
    解得:x=8,即这批学生有8人
    本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,设参数法列方程解实际问题的运用,解答时根据工作量为2a和a建立方程是关键,运用整体思想是难点.
    12、矩形是对角线相等的平行四边形
    【解析】
    把命题的条件和结论互换就得到它的逆命题。
    【详解】
    命题”两条对角线相等的平行四边形是矩形“的逆命题是矩形是两条对角线相等的平行四边形,
    故答案为:矩形是两条对角线相等的平行四边形。
    本题考查命题与逆命题,熟练掌握之间的关系是解题关键.
    13、1
    【解析】
    根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.
    【详解】
    解:本次比赛一共有:5+19+13+13=50人,
    ∴中位数是第25和第26人的年龄的平均数,
    ∵第25人和第26人的年龄均为1岁,
    ∴全体参赛选手的年龄的中位数为1岁.
    故答案为1.
    中位数的定义是本题的考点,熟练掌握其概念是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、证明见解析.
    【解析】证明:∵AB∥CD,CE∥AD,
    ∴四边形AECD是平行四边形.
    ∵AC平分∠BAD,
    ∴∠BAC=∠DAC,
    又∵AB∥CD,
    ∴∠ACD=∠BAC=∠DAC,
    ∴AD=DC,
    ∴四边形AECD是菱形.
    15、 (1) 甲的众数和中位数都是7分;(2) 选乙运动员更合适,理由见解析
    【解析】
    (1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
    (2)分别求得数据的平均数,然后结合方差作出判断即可.
    【详解】
    (1)甲运动员测试成绩中7出现的次数最多,故众数为7;
    成绩排序为:5,6,7,7,7,7,7,8,8,8,
    所以甲的中位数为=7,
    所以甲的众数和中位数都是7分.
    (2)∵=(7+6+8+7+7+5+8+7+8+7)=7(分),
    =(6+6+7+7+7+7+7+7+8+8)=7(分),
    =(5×2+6×4+7×3+8×1)=6.3(分),
    ∴=,S甲2>S乙2,
    ∴选乙运动员更合适.
    本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.
    16、(1);(2)的坐标是;(3).
    【解析】
    (1)根据待定系数法确定函数解析式即可;
    (2)作CD⊥y轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标;
    (3)求得B点关于y轴的对称点B′的坐标,连接B′C与y轴的交点即为所求的P点,由B′、C坐标可求得直线B′C的解析式,则可求得P点坐标.
    【详解】
    解:
    设直线的解析式为:,
    把代入可得:,
    解得:
    所以一次函数的解析式为:;
    如图,作轴于点

    在与中



    则的坐标是;
    如图中,作点关于轴的对称点,连接交轴于,此时的值最小,


    把代入中,
    可得:,
    解得:,
    直线的解析式为,
    令,得到,
    .
    本题考查的是一次函数的综合题,根据待定系数法求一次函数的解析式、全等三角形的判定与性质,以及轴对称-最短距离,根据题意作出辅助线,构造出全等三角形是解答此题的关键.
    17、 (1) ; (2) (4,9)或(-20,-9).
    【解析】
    分析:
    (1)将点E(-8,0)代入y=kx+6中即可解得k的值;
    (2)由已知易得OA=6,由(1)中所得k的值可得直线EF的解析式为:,设点P的坐标为(x,y),则点P到OA的距离为,由此可得S△OAP=,从而可得,结合解得对应的的值即可得到点P的坐标.
    详解:
    (1)将点E(-8,0)代入到y=kx+6中,得:-8k+6=0,
    解得:;
    (2)∵,
    ∴直线EF的解析式为:.
    ∵点A的坐标为(-6,0),
    ∴OA=6,
    设点P的坐标为(x,y),则点P到OA的距离为,
    ∴S△OAP=,解得:,
    ∵,
    ∴或,
    解得:或,
    ∴当△OPA的面积为27时,点P的坐标为(4,9)或(-20,-9).
    点睛:“设点P的坐标为(x,y),则点P到OA的距离为,由此结合已知条件得到:S△OAP=OA·”是解答本题的关键.
    18、(1)解集为,整数解是-1,0;(2)
    【解析】
    (1)先解不等式,再求整数解;(2)运用加减法即可.
    【详解】
    解:(1)
    解不等式①,得
    解不等式②,得
    所以
    所以整数解是-1,0;
    (2)
    ①ⅹ2-②ⅹ3,得
    -5
    解得x=9
    把x=9代入②,得
    解得y=2
    所以,方程组的解是
    考核知识点:解不等式组,解二元一次方程组.运用加减法解方程组是关键;解不等式是重点.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (−1,0).
    【解析】
    先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
    【详解】
    ∵直线y=kx+b和直线y=−3x平行,
    ∴k=−3,
    把(0,−3)代入y=−3x+b得b=−3,
    ∴直线解析式为y=−3x−3,
    当y=0时,−3x−3=0,解得x=−1,
    ∴直线y=−3x−3与x轴的交点坐标为(−1,0).
    故答案为(−1,0).
    此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
    20、1
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    ∵a1,∴a﹣1,∴(a﹣1)1=3,a1=1(a+1),∴a1﹣1a=1,∴原式=.
    故答案为:1.
    本题考查了二次根式,解题的关键是熟练运用二次根式的运算以及整式的运算,本题属于中等题型.
    21、
    【解析】
    根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.
    【详解】
    由题意得,
    解得:x=4,
    所以y=3,
    所以=,
    故答案为:.
    本题考查了二次根式有意义的条件,熟练掌握是解题的关键.
    22、(-1,2)
    【解析】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    【详解】
    关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
    故Q坐标为(-1,2).
    故答案为:(-1,2).
    此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
    23、1
    【解析】
    根据三角形中位线定理得到,,根据平行四边形的性质求出,根据直角三角形的性质计算即可.
    【详解】
    解:点,分别是边,的中点,
    ,,

    ,又,
    四边形为平行四边形,

    ,点是边的中点,

    故答案为:1.
    本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元
    【解析】
    (1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.
    (2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.
    (3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.
    【详解】
    (1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:
    ,解得:.
    答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.
    (2)设购买购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:
    ,解得:.
    ∵a为整数,∴a=99,100,101,则电脑依次买:297,296,295.
    ∴该校有三种购买方案:
    方案一:购买笔记本电脑295台,则购买电子白板101块;
    方案二:购买笔记本电脑296台,则购买电子白板100块;
    方案三:购买笔记本电脑297台,则购买电子白板99块.
    (3)设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,
    则W=4000z+15000(396﹣z)=﹣11000z+5940000,
    ∵W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)
    ∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元.
    25、(1)见解析;(2)两条平行线被第三条直线所截,同旁内角的平分线互相垂直
    【解析】
    (1)先根据AB∥CD求出∠BEF与∠DFE的关系,再由角平分线的性质求出∠FEG+∠EFG的度数,然后由三角形内角和定理即可求出∠EGF的度数,进而可得结论;
    (2)根据(1)的结论写出所证命题即可.
    【详解】
    (1)证明:∵AB∥CD(已知),
    ∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴∠GEF=∠BEF,∠GFE=∠DFE(角平分线的定义),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(等式的性质),
    ∴∠GEF+∠GFE=×180°=90°(等量代换),
    在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和定理),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG( 垂直的定义);
    (2)用文字语言可表示为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    故答案为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    本题考查的是平行线的性质、角平分线的性质和三角形内角和定理,属于基础题型,熟练掌握上述基本知识是解题关键.
    26、(1)见解析 (2) ,理由见解析.
    【解析】
    (1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形的性质逆推得,结合等腰三角形的性质可以得到答案.
    【详解】
    (1)证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC,
    ∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE,
    ∴∠DAE=∠DAC+∠CAE=×180°=90°,
    又∵AD⊥BC,CE⊥AN, ∴∠ADC=∠CEA=90°,
    ∴四边形ADCE为矩形.
    (2)当时,四边形ADCE是一个正方形.
    理由:∵AB=AC, AD⊥BC ,
    , ,
    ∵四边形ADCE为矩形, ∴矩形ADCE是正方形.
    ∴当时,四边形ADCE是一个正方形.
    本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.
    题号





    总分
    得分
    批阅人
    年龄组
    12岁
    13岁
    14岁
    15岁
    参赛人数
    5
    19
    13
    13
    测试序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    成绩(分)
    7
    6
    8
    7
    7
    5
    8
    7
    8
    7
    相关试卷

    2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】: 这是一份2024年福建省福州市杨桥中学九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年浙江省绍兴市柯桥区杨汛桥镇中学数学八上期末经典试题含答案: 这是一份2023-2024学年浙江省绍兴市柯桥区杨汛桥镇中学数学八上期末经典试题含答案,共8页。试卷主要包含了点M等内容,欢迎下载使用。

    2022-2023学年浙江省绍兴市柯桥区杨汛桥镇中学七年级数学第二学期期末联考模拟试题含答案: 这是一份2022-2023学年浙江省绍兴市柯桥区杨汛桥镇中学七年级数学第二学期期末联考模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,化简的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map