2025届浙江省余姚市九上数学开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有1个白色正方形,图②中有4个白色正方形,图③中有7个白色正方形,图④中有10个白色正方形,,依次规律,图⑩中白色正方形的个数是( )
A.27B.28C.29D.30
2、(4分)某居民小区10户家庭5月份的用水情况统计结果如表所示:这10户家庭的月平均用水量是( )
A.2m3 B.3.2m3 C.5.8m3 D.6.4m3
3、(4分)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=
A.40°B.50°
C.60°D.75°
4、(4分)若函数y=2x+3与y=3x-2b的图象交x轴于同一点,则b的值为( )
A.-3B.-C.9D.-
5、(4分)以下列各组数为边长,能构成直角三角形的是( )
A.B.C.D.
6、(4分)如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为( )
A.B.C.D.
7、(4分)如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )
A.(-8,0)B.(0,8)
C.(0,8)D.(0,16)
8、(4分)若x<y,则下列式子不成立的是 ( )
A.x-1<y-1B.C.x+3<y+3D.-2x<-2y
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.
10、(4分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= _____.
11、(4分)若最简二次根式与可以合并,则a=____.
12、(4分)在一次函数y=kx+b(k≠0)中,函数y与自变量x的部分对应值如表:
则m的值为_____.
13、(4分)在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:
③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.
(1)以上三个命题是真命题的为(直接作答)__________________;
(2)选择一个真命题进行证明(先写出所选命题.然后证明).
15、(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.
(1)求证:四边形ABCD是菱形;
(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.
16、(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
(1)求第一批每支钢笔的进价是多少元?
(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
17、(10分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;
(探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;
(应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为 .
18、(10分)已知关于x的一元二次方程x2﹣(n+3)x+3n=1.求证:此方程总有两个实数根.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将一副直角三角板按如图所示的方式放置,其中,把含角的三角板向右平移,使顶点B落在含角的三角板的斜边上,则的长度为______.
20、(4分)甲、乙两个样本,甲的方差为0.102,乙的方差为0.06,哪个样本的数据波动大?答:________.
21、(4分)已知平行四边形的周长是24,相邻两边的长度相差4,那么相邻两边的长分别是_____.
22、(4分)甲,乙两车都从A地出发,沿相同的道路,以各自的速度匀速驶向B地.甲车先出发,乙车出发一段时间后追上甲并反超,乙车到达B地后,立即按原路返回,在途中再次与甲车相遇。着两车之间的路程为s(千米),与甲车行驶的时间t(小时)之间的图象如图所示.乙车从A地出发到返回A地需________小时.
23、(4分)当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,在中,,,点,分别在边AC,BC上,,连接BD,点F,P,G分别为AB,BD,DE的中点.
(1)如图1中,线段PF与PG的数量关系是 ,位置关系是 ;
(2)若把△ CDE绕点C逆时针方向旋转到图2的位置,连接AD,BE,GF,判断△ FGP的形状,并说明理由;
(3)若把△ CDE绕点C在平面内自由旋转,AC=8,CD=3,请求出△FGP面积的最大值.
25、(10分)如图,在□ABCD中,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)
(1)在图1中,过点E作直线EF将□ABCD分成两个全等的图形;
(2)在图2中,DE=DC,请你作出∠BAD的平分线AM.
26、(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.
(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.
(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
仔细观察图形,找到图形的个数与白色正方形的个数的通项公式后代入n=10后即可求解.
【详解】
解:观察图形发现:
图①中有1个白色正方形,
图②中有1+3×(2-1)=4个白色正方形,
图③中有1+3×(3-1)=7个白色正方形,
图④中有1+3×(4-1)=10个白色正方形,
…,
图n中有1+3(n-1)=3n-2个白色的正方形,
当n=10时,1+3×(10-1)=28,
故选:B.
本题是对图形变化规律的考查,难点在于利用求和公式求出第n个图形的黑色正方形的数目的通项表达式.
2、C
【解析】
把已知数据代入平均数公式求平均数即可.
【详解】
月平均用水量=
故答案为:C.
此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义与公式.
3、B
【解析】
分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.
详解:∵∠B=∠D=90°
在Rt△ABC和Rt△ADC中
,
∴Rt△ABC≌Rt△ADC(HL)
∴∠2=∠ACB=90°-∠1=50°.
故选B.
点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
4、D
【解析】
本题可先求函数y=2x+3与x轴的交点,再把交点坐标代入函数y=3x-2b,即可求得b的值.
【详解】
解:在函数y=2x+3中,当y=0时,x=﹣,即交点(﹣,0),把交点(﹣,0)代入函数y=3x﹣2b,求得:b=﹣.
故选D.
错因分析 容易题.失分原因是对两个一次函数图象的交点问题没有掌握.
5、C
【解析】
欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
【详解】
解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;
C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;
D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.
故选:C.
此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
6、D
【解析】
连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH= ,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.
【详解】
解:如图,连接AF交BE于点O,过点F作MN⊥AB,
∵AB∥CD,MN⊥AB,
∴MN⊥CD,
∵AB=2=AD,点E是AD中点,
∴AE=1,
∴EB=,
∵S△ABE=×AB×AE=×BE×AO,
∴2×1=AO,
∴AO=,
∵将△ABE沿BE折叠,点A的对应点为F,
∴AO=OH=,AB=BF=2,
∴AF=,
∵AF2-AN2=FN2,BF2-BN2=FN2,
∴AF2-AN2=BF2-BN2,
∴-(2-BN)2=4-BN2,
∴BN=,
∴FN=,
∵MN⊥AB,MN⊥CD,∠DCB=90°,
∴四边形MNBC是矩形,
∴BN=MC=,BC=MN=2,
∴MF=,
∴CF=.
故选:D.
本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.
7、D
【解析】
根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘以,可求出从A到A3变化后的坐标,再求出A1、A2、A3、A4、A5,继而得出A8坐标即可.
【详解】
解:根据题意和图形可看出每经过一次变化,都顺时针旋转45°,边长都乘,
∵从A到经过了3次变化,
∵45°×3=135°,1×=2,
∴点所在的正方形的边长为2,点位置在第四象限,
∴点的坐标是(2,-2),
可得出:点坐标为(1,1),
点坐标为(0,2),点坐标为(2,-2),
点坐标为(0,-4),点坐标为(-4,-4),
(-8,0),A7(-8,8),(0,16),
故选D.
本题考查了规律题,点的坐标,观察出每一次的变化特征是解答本题的关键.
8、D
【解析】
根据不等式的性质逐项分析即可.
【详解】
A. ∵ x<y,∴ x-1<y-1,故成立;
B. ∵ x<y,∴ ,故成立;
C. ∵ x<y,∴ x+3<y+3,故成立;
D. ∵ x<y,∴ -2x>-2y,故不成立;
故选D.
故选:D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
【详解】
作MG⊥DC于G,如图所示:
设MN=y,PC=x,
根据题意得:GN=2,MG=|10-1x|,
在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
即y1=21+(10-1x)1.
∵0<x<10,
∴当10-1x=0,即x=2时,y1最小值=12,
∴y最小值=2.即MN的最小值为2;
故答案为:2.
本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
10、20°
【解析】
解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为20°.
点睛:本题考查了菱形的性质、直角三角形斜边上中线的性质,得到OE为直角三角形BED斜边上的中线是解题的关键.
11、1
【解析】
由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.
【详解】
解:由题意,得1+2a=5−2a,
解得a=1.
故答案为1.
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
12、-2
【解析】
把两组坐标代入解析式,即可求解.
【详解】
解:将(﹣1,7)、(0,1)代入y=kx+b,
得:,解得:,
∴一次函数的解析式为y=﹣5x+1.
当x=1时,m=﹣5×1+1=﹣2.
故答案为:﹣2.
此题主要考查一次函数的解析式,解题的关键是熟知待定系数法确定函数关系式.
13、
【解析】
要使直线与线段AB交点,则首先当直线过A是求得k的最大值,当直线过B点时,k取得最小值.因此代入计算即可.
【详解】
解:当直线过A点时, 解得
当直线过B点时, 解得
所以要使直线与线段AB有交点,则
故答案为:
本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握.
三、解答题(本大题共5个小题,共48分)
14、(1)①②③;①③②;②③①. (2)见解析
【解析】
(1)根据真命题的定义即可得出结论,
(2)根据全等三角形的判定方法及全等三角形的性质即可证明.
【详解】
解:(1)①②③;①③②;②③①.
(2)如①③②
AB=AC
=
BD=CE
△ABD≌△ACE
AD=AE
15、(1)详见解析;(2)1.
【解析】
(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
【详解】
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵BA=BC,
∴AD=BC,
∴四边形ABCD是平行四边形,
∵BA=BC,
∴四边形ABCD是菱形;
(2)解:∵DE⊥BD,
∴∠BDE=90°,
∴∠DBC+∠E=∠BDC+∠CDE=90°,
∵CB=CD,
∴∠DBC=∠BDC,
∴∠CDE=∠E,
∴CD=CE=BC,
∴BE=2BC=10,
∵BD=8,
∴DE==6,
∵四边形ABCD是菱形,
∴AD=AB=BC=5,
∴四边形ABED的周长=AD+AB+BE+DE=1.
本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
16、(1)15元;(2)1支.
【解析】
试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
(2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
﹣=10
解得:x=15,经检验,x=15是方程的解.
答:第一批文具盒的进价是15元/只.
(2)设销售y只后开始打折,根据题意得:
(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
答:至少销售1只后开始打折.
点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
17、探究:见解析;应用:.
【解析】
探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;
应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.
【详解】
解:探究:如图②中,
∵∠BAC=∠DAE,∠ABC=∠ADE,
∴△DAE∽△BAC,∠DAB=∠EAC,
∴,
∴,
∴△ABD∽△ACE;
应用:①当点D在AC的下方时,如图③−1中,
作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,
∴,即,
又∵∠BAD=∠OAC,
∴△ACO∽△ADB,
∴∠ABD=∠AOC=90°,
∵当OD⊥BE时,OD最小,
过O作OF⊥BD于F,则△BOF为直角三角形,
∵A点的坐标是(0,6),AB=BO,∠ABO=120°,
∴易得OB=2,
∵∠ABO=120°,∠ABD=90°,
∴∠OBF=30°,
∴OF=OB=,
即OD最小值为;
当点D在AC的上方时,如图③−2中,
作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',
∴∠AB'D=∠AOC=90°,
∴当OD⊥B'E时,OD最小,
过O作OF'⊥B'D于F',则△B'OF'为直角三角形,
∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,
∴易得OB'=2,
∵∠AB'O=120°,∠AB'D=90°,
∴∠OB'F'=30°,
∴OF'=OB'=,
即OD最小值为.
故答案为:.
本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.
18、见解析.
【解析】
利用根的判别式△≥1时,进行计算即可
【详解】
△=,
所以,方程总有两个实数根.
此题考查根的判别式,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据特殊角的锐角三角函数值,求出EC、EG的长即可.
【详解】
解:在直角△BCF中,∵∠F=45°,BC=1,
∴CF=BC=1.
又∵EF=8,
则EC=2.
在直角△ABC中,∵BC=1,∠A=30°,
∴,
则AE=,∠A=30°,
∴.
故答案为:.
本题考查的是平移的性质,需要正确运用锐角三角函数和特殊角的三角函数值.
20、甲的波动比乙的波动大.
【解析】
根据方差的定义,方差越小数据越稳定,故可得到正确答案.
【详解】
解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故答案:甲的波动比乙的波动大.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、4和1
【解析】
设短边为x,则长边为x+4,再利用周长为24作等量关系,即可列方程求解.
【详解】
∵平行四边形周长为24,
∴相邻两边的和为12,
∵相邻两边的差是4,
设短边为x,则长边为x+4
∴x+4+x=12
∴x=4
∴两边的长分别为:4,1.
故答案为:4和1;
主要考查了平行四边形的性质,即平行四边形的对边相等这一性质,并建立适当的方程是解题的关键.
22、
【解析】
根据题意和函数图象中的数据可以列出相应的方程组,从而可以求得甲、乙两车的速度和乙到达B地时的时间,再根据函数图象即可求得乙车从A地出发到返回A地需的时间.
【详解】
解:如图,
设甲车的速度为a千米/小时,乙的速度为b千米/小时,甲乙第一相遇之后在c小时,相距200千米,则
,
解得:,
∴乙车从A地出发到返回A地需要:(小时);
故答案为:
本题考查函数图象,解三元一次方程组,解答本题的明确题意,利用数形结合的思想解答.
23、3
【解析】
先根据分式无意义的条件可求出的值,再根据分式值为0的条件可求出b的值,最后将求出的a,b代入计算即可.
【详解】
因为当时,分式无意义,
所以,
解得:,
因为当时,分式的值为零,
所以,
解得:,
所以
故答案为:3.
本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.
二、解答题(本大题共3个小题,共30分)
24、1)PF=PG PF⊥PG;(2)△FGP是等腰直角三角形,理由见解析;(3)S△PGF最大=.
【解析】
(1)根据等腰三角形的性质和三角形的中位线定理解答即可;
(2)由旋转知,∠ACD=∠BCE,进一步证明△CAD≌△CBE,再利用全等三角形的判定和性质以及三角形中位线定理解答;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,PG最大时,△FGP面积最大,进而解答即可.
【详解】
解(1)PF=PG PF⊥PG;
如图1,∵在△ABC中,AB=BC,点,分别在边AC,BC上,且CD=CE,
∴AC-CD=BC-CE,即AD=BE,点F、P、G分别为DE、DC、BC的中点,
∴PF=AB,PG=CE,
∴PF=PG,
∵点F、P、G分别为DE、DC、BC的中点,
∴PG//BE,PF//AD,
∴∠PFB=∠A,∠DPG=∠DBC,
∴∠FPG=∠DPF+∠DPG
=∠PFB+∠DBA+∠DPG
=∠A+∠DBA+∠DBC
=∠A+∠ABC,
∵∠ABC+∠ACB=180°-∠C
∴∠FPG=180°-90°=90°,PF⊥PG;
(2)△FGP是等腰直角三角形
理由:由旋转知,∠ACD=∠BCE,
∵AC=BC,CD=CE,
∴△CAD≌△CBE(SAS),
∴∠CAD=∠CBE,AD=BE,
利用三角形的中位线得,PG=BE,PF=AD,
∴PG=PF,
∴△FGP是等腰三角形,
利用三角形的中位线得,PG∥CE,
∴∠DPG=∠DBE,
利用三角形的中位线得,PF∥AD,
∴∠PFB=∠DAB,
∵∠DPF=∠DBA+∠PNB=∠DBA+∠DAB,
∴∠GPF=∠DPG+∠DPF=∠DBE+∠DBA+∠DAB
=∠ABE+∠DAB=∠CBA+∠CBE+∠DAB
=∠CBA+∠CAD+∠DAB=∠CBA+∠CAB,
∵∠ACB=90°,
∴∠CBA+∠CAB=90°,
∴∠GPF=90°,
∴△FGP是等腰直角三角形;
(3)由(2)知,△FGP是等腰直角三角形,PG=PF=AD,
∴PG最大时,△FGP面积最大,
∴点D在AC的延长线上,
∴AD=AC+CD=11,
∴PG=,
∴S△PGF最大=PG2=
此题属于几何变换综合题,关键是根据三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质进行解答.
25、(1)详见解析;(2)详见解析
【解析】
(1)作▱ABCD的对角线AC、BD,交于点O,作直线EO交BC于点F,直线EF即为所求;
(2)作射线AF即可得.
【详解】
(1)如图1,直线EF即为所求;
(2)如图2,射线AM即为所求.
本题主要考查作图-基本作图,熟练掌握平行四边形的性质是解题的关键.
26、 (1)菱形,理由见解析;(2)1.
【解析】
①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.
【详解】
解:(1)四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=AB=BD,
∴四边形BECD是菱形;
故答案为:菱形;
(2)当∠A=1°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,
当∠A=1°时,△ABC是等腰直角三角形,
∵D为AB的中点,
∴CD⊥AB,
∴∠CDB=90°,
∴四边形BECD是正方形;
故答案为:1.
本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
月用水量/m3
4
5
6
8
9
户数
2
3
3
1
1
x
…
﹣2
﹣1
0
1
2
…
y
…
12
7
2
m
﹣8
…
2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】: 这是一份2025届浙江省嘉兴市海宁新仓中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】: 这是一份2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。