安徽安庆2025届数学九年级第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式运算结果为x8的是( )
A.x4•x4B.(x4)4C.x16÷x2D.x4+x4
2、(4分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段OP的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是( )
A.B.C.D.
3、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.三角形B.圆C.角D.平行四边形
4、(4分)在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,在下列关系中,不属于直角三角形的是( )
A.b2=a2﹣c2 B.a:b:c=3:4:5
C.∠A﹣∠B=∠C D.∠A:∠B:∠C=3:4:5
5、(4分)在平面直角坐标系中,将点先向左平移个单位长度,再向下平移个单位长度,则平移后得到的点是( )
A.B.C.D.
6、(4分)某市的夏天经常台风,给人们的出行带来很多不便,小明了解到去年8月16日的连续12个小时的风力变化情况,并画出了风力随时间变化的图象(如图),则下列说法正确的是( )
A.20时风力最小B.8时风力最小
C.在8时至12时,风力最大为7级D.8时至14时,风力不断增大
7、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的个数是( )
A.1B.2C.1D.4
8、(4分)关于的一元二次方程的一个根为0,则的值是( )
A.B.3C.或1D.3或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为 .
10、(4分)已知直线不经过第一象限,则的取值范围是_____________。
11、(4分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.
12、(4分)如图,小丽在打网球时,为使球恰好能过网(网高0.8米),且落在对方区域离网3米的位置上,已知她的击球高度是2.4米,则她应站在离网________米处.
13、(4分)已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数的图象上,且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:、、是的三边,且满足:,面积等于______.
15、(8分)如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).
(1)求m的值及一次函数的解析式;
(2)求△ACD的面积.
16、(8分)某水上乐园普通票价20元/张,假期为了促销,新推出两种优惠卡:贵宾卡售价600元/张,每次凭卡不再收费;会员卡售价200元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出假期选择会员卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C、D的坐标,并直接写出选择哪种消费方式更合算.
17、(10分)先化简,再求值:÷(1﹣),请你给x赋予一个恰当的值,并求出代数式的值.
18、(10分)如图,在边长为1的小正方形网格中,△AOB的顶点均在格点上,
(1)将△AOB向右平移4个单位长度得到△A1O1B1,请画出△A1O1B1;
(2)以点A为对称中心,请画出△ AOB关于点A成中心对称的△ A O2 B2,并写点B2的坐标;
(1)以原点O为旋转中心,请画出把△AOB按顺时针旋转90°的图形△A2 O B1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把我们平时使用的一副三角板,如图叠放在一起,则∠的度数是___度.
20、(4分)某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.
21、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
22、(4分)将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
23、(4分)若不等式组无解,则a的取值范围是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
25、(10分)如图1,是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一四柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:
(1)图2中折线ABC表示 槽中水的深度与注水时间关系,线段DE表示 槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是 .
(2)注水多长时间时,甲、乙.两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),则乙槽中铁块的体积为 立方厘米.
26、(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.
(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:选项A,原式=;选项B,原式=x16;选项C,原式=;选项D, 原式=
故选A
2、D
【解析】
通过点经过四边形各个顶点,观察图象的对称趋势问题可解.
【详解】
、选项路线都关于对角线对称,因而函数图象应具有对称性,故、错误,对于选项点从到过程中的长也存在对称性,则图象前半段也应该具有对称特征,故错误.
故选:.
本题动点问题的函数图象,考查学生对动点运动过程中所产生函数图象的变化趋势判断.解答关键是注意动点到达临界前后的图象变化.
3、B
【解析】
根据轴对称图形与中心对称图形的概念逐项判断可得答案.
【详解】
解:A、三角形不一定是轴对称图形,不是中心对称图形,故本选项错误;
B、圆既是轴对称图形又是中心对称图形,故本选项正确;
C、角是轴对称图形,不一定是中心对称图形,故本选项错误;
D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;
故选:B.
此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、D
【解析】
根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,三角形内角和为180°进行分析即可.
【详解】
A选项:∵b2=a2-c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;
B选项:∵32+42=52,∴是直角三角形,故此选项不合题意;
C选项:∵∠A-∠B=∠C,
∴∠A=∠B+∠C,
∵∠A+∠B+∠C=180°,
∴∠A=90°,
∴是直角三角形,故此选项不合题意;
D选项:∠A:∠B:∠C=3:4:5,
∴∠C=180°× =75°,
∴不是直角三角形,故此选项符合题意;
故选D.
主要考查了勾股定理逆定理,以及三角形内角和定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
5、A
【解析】
根据向左平移横坐标减,向下平移纵坐标减进行解答即可.
【详解】
解:将点先向左平移个单位长度得,再向下平移个单位长度得.
故选A.
本题主要考查点坐标的平移规律:左减右加纵不变,上加下减横不变.
6、A
【解析】
根据函数图象可以判断各个选项中的结论是否正确,本题得以解决.
【详解】
解:由图象可得,
20时风力最小,故选项A正确,选项B错误,
在8时至12时,风力最大为4级,故选项C错误,
8时至11时,风力不断增大,11至12时,风力在不断减小,在12至14时,风力不断增大,故选项D错误,
故选:A.
本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.
7、C
【解析】
根据正方形基本性质和相似三角形性质进行分析即可.
【详解】
①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;
②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=1.所以BG=1=6﹣1=GC;
③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
④错误.
过F作FH⊥DC,
∵BC⊥DH,
∴FH∥GC,
∴△EFH∽△EGC,
∴
EF=DE=2,GF=1,
∴EG=5,
∴
∴S△FGC=S△GCE﹣S△FEC=
故选C.
考核知识点:相似三角形性质.
8、B
【解析】
根据一元二次方程的解的定义,将x=0代入关于x的一元二次方程,列出关于a的一元一次方程,通过解方程即可求得a的值.
【详解】
根据题意知,x=0是关于x的一元二次方程的根
∴a2-2a-3=0,解得,a=3或a=-1
又∵a2-1≠0,
∴.a≠±1.
∴.a=3.
故选:B.
本题考查了一元二次方程的解的定义,一元二次方程的解使方程的左右两边相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据题意PD=t,则PA=10-t,首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题,
【详解】
解:如图,根据题意PD=t,则PA=10−t,
∵B、E、P共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=10,
在Rt△ABP中,
∵,
∴,
∴t=2或18(舍去),
∴PD=2,
∴t=2时,B、E、P共线;
故答案为:2.
本题主要考查了矩形的性质,轴对称的性质,掌握矩形的性质,轴对称的性质是解题的关键.
10、
【解析】
当m-3>0时,直线均经过第一象限;当m-3<0时,直线与y轴交点≤0时不经过第一象限.
【详解】
解:当m-3>0,即m>3时,直线均经过第一象限,不合题意,则m<3;
当m<3时,只有-3m+1≤0才能使得直线不经过第一象限,解得,
综上,的取值范围是:.
本题考查了一次函数系数与象限位置的关系,注意分类讨论.
11、(9,0)
【解析】
根据位似图形的定义,连接A′A,B′B并延长交于(9,0),
所以位似中心的坐标为(9,0).
故答案为:(9,0).
12、6
【解析】
由题意可得,△ABE∽△ACD,故,由此可求得AC的长,那么BC的长就可得出.
【详解】
解:如图所示:
已知网高,击球高度,,
由题意可得,
∴
∴,
∴,
∴她应站在离网6米处.
故答案为:6.
本题考查了相似三角形的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
13、>
【解析】
根据反比例函数的增减性,k=1>0,且自变量x<0,图象位于第三象限,y随x的增大而减小,从而可得结论.
【详解】
在反比例函数y=中,k=1>0,
∴该函数在x<0内y随x的增大而减小.
∵x1<x1<0,
∴y1>y1.
故答案为:>.
本题考查了反比例函数的性质,解题的关键是得出反比例函数在x<0内y随x的增大而减小.本题属于基础题,难度不大,解决该题型题目时,根据系数k的取值范围确定函数的图象增减性是关键.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
利用非负数的性质求出a,b,c的值,即可根据勾股定理的逆定理对于三角形形状进行判断,再根据三角形面积公式即可求解.
【详解】
证明:∵,
∴a−8=0,b−15=0,c−17=0,
∴a=8,b=15,c=17,
∵82+152=172,
∴三角形为直角三角形,
∴的面积为:8×15÷2=1.
故答案为1.
此题考查了勾股定理的逆定理,以及非负数的性质,三角形面积,得出△ABC是直角三角形是解本题的关键.
15、(1)一次函数的解析式为y= x-12(2)36
【解析】
分析:(1)先把点C(4,m)代入y=-3x+6得求得m=-6,然后利用待定系数法确定一次函数的解析式;
(2)先确定直线y=-3x+6与x轴的交点坐标,然后利用S△ACD=S△ABD+S△ABC进行计算.
(1)∵y=-3x+6经过点C(4,m)
∵-3×4+6=m
∴m=-6.
点C的坐标为(4,-6)
又∵y=kx+b过点A(8,0)和C(4,-6),
所以,解得
∴一次函数的解析式为y=x-12;
(2)∵y=-3x+6与y轴交于点D,与x轴交于点B,
∴D点的坐标为(0,6),点B的坐标为(2,0),
过点C作CH⊥AB于H,
又∵点A(8,0),点C(4,-6)
∴AB=8-2=6,OD=6,CH=6,
点睛:本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2,直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点满足两函数的解析式,也考查了待定系数法求一次函数的解析式.
16、 (1), ;(2)A(0,200),B(20,400),C(40,600),D(30,600),当时, 选择普通消费;当x=20时,选择普通消费或会员卡都可以;当时,选择会员卡;当x=40时,选择贵宾卡或会员卡都可以;当时,选择贵宾卡
【解析】
(1)根据会员卡售价200元/张,每次凭卡另收10元,以及普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;利用点的坐标以及结合得出函数图象得出答案.
【详解】
解:(1)根据题意得:普通消费:,
会员卡:;
(2)令,即,
解得x=20,y=400,
即A(0,200),B(20,400),D(30,600),
当y=600时,代入解得:x=40,
即点C的坐标为C(40,600),
当时,选择普通消费,
当x=20时,选择普通消费或会员卡都可以,
当时,选择会员卡,
当x=40时,选择贵宾卡或会员卡都可以,
当时,选择贵宾卡.
此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
17、.
【解析】
先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的x的值代入计算可得.
【详解】
原式=
=
=,
当x=0时,原式=.
本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.
18、(1)如图所示:△A1O1B1为所求作的三角形;见解析;(2)如图所示:为所求作的三角形,见解析;(-1,4);(1)如图所示:为所求作的三角形;见解析.
【解析】
(1)先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形;
(2)关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分得特点,找到关键点的对应点,再顺次连接对应点即可得到平移后的图形;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即可得到B点的坐标;
(1)先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到对应点A2O, B1,最后顺次连接,顺次连接得出旋转后的图形.
【详解】
解:(1)如图所示:先将A,B,O三点向右平移4个单位长度,得到A1 ,O1, B1,最后顺次连接,即可得到:为所求作的三角形;
(2)如图所示:先将A,B,O以点A为对称中心,得到A,O2, B2最后顺次连接,即可得到:为所求作的三角形,(-1,4);
(1)如图所示:先将A,B,O以原点O为旋转中心, 顺时针旋转90°,得到A2,O, B1,最后顺次连接,即可得到:为所求作的三角形;
本题主要考查了利用旋转变换,平移变换以及中心对称进行作图,解题时注意:关于x轴的对称点的横坐标不变,纵坐标互为相反数.关于y轴的对称点的横坐标互为相反数,纵坐标不变.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、105
【解析】
根据三角板上的特殊角度,外角与内角的关系解答.
【详解】
根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,
∵∠α是△BDE的外角,
∴∠α=∠AEB+∠B=45°+60°=105°
故答案为:105.
此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角.
20、1
【解析】
由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.
【详解】
∵多边形的一个顶点出发的对角线共有(n-3)条,
∴n-3=3,
∴n=6,
∴内角和=(6-2)×180°=1°,
故答案是:1.
本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.
21、﹣1
【解析】
首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BG,AD=BC,
∴∠DAE=∠G=30°,
∵DE=EC,∠AED=∠GEC,
∴△ADE≌△GCE,
∴AE=EG=AD=CG=1,
在Rt△BFG中,∵FG=BG•cs30°=,
∴EF=FG-EG=-1,
故答案为-1.
本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
22、y=3x-1
【解析】
∵y=3x+1的图象沿y轴向下平移2个单位长度,
∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
故答案为y=3x﹣1.
23、a<1.
【解析】
解出不等式组含a的解集,与已知不等式组 无解比较,可求出a的取值范围.
【详解】
解不等式3x﹣2≥ ,得:x≥1,
解不等式x﹣a≤0,得:x≤a,
∵不等式组无解,
∴a<1,
故答案为a<1.
此题考查解一元一次不等式组,解题关键在于掌握运算法则
二、解答题(本大题共3个小题,共30分)
24、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算
【解析】
(1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;
(2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;
(3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.
【详解】
解:(1)由题意可得:y1=36x;
(2)当0≤x≤10时,y2=42x;
当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;
(3)若x>10,则y2=33.6x+84,
①当y1=y2时,36x=33.6x+84,
解得:x=35;
②当y1>y2时,36x>33.6x+84,
解得:x>35;
③当y1<y2时,36x<33.6x+84,
解得:x<35;
∵x>10,
∴10<x<35,
答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;
若购买书包个数超过10个但小于35个,选A品牌划算.
此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.
25、(1)乙;甲;乙槽中铁块的高度为14cm;(2)当2分钟时两个水槽水面一样高;(3)84.
【解析】
(1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;
(2)分别求出两个水槽中y与x的函数关系式,令y相等即可得到水位相等的时间;
(3)用水槽的体积减去水槽中水的体积即可得到铁块的体积;
【详解】
解:(1)根据图像可知,折线ABC表示乙槽中水的深度与注水时间关系,线段DE表示甲槽中水的深度与注水时间之间的关系,点B的纵坐标表示的实际意义是:乙槽中铁块的高度为14cm;
故答案为:乙;甲;乙槽中铁块的高度为14cm;
(2)设线段AB、DE的解析式分别为:y1=k1x+b1,y2=k2x+b2,
∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)
∴,
解得:,
∴解析式为y=3x+2和y=-2x+12,
令3x+2=-2x+12,
解得x=2,
∴当2分钟时两个水槽水面一样高.
(3)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm,
当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,
设铁块的底面积为acm2,则乙水槽中不放铁块的体积分别为:2.5×36cm3,
∴放了铁块的体积为:3×(36-a)cm3,
∴1×3×(36-a)=1×2.5×36,
解得a=6,
∴铁块的体积为:6×14=84(cm3),
故答案为:84.
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
26、解:(1)①△A1B1C1如图所示;
②△A1B1C1如图所示.
(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).
【解析】
试题分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可.
②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可.
(1)连接B1B1,C1C1,交点就是对称中心M.
题号
一
二
三
四
五
总分
得分
安徽省安庆市区二十三校2024-2025学年数学九上开学联考模拟试题【含答案】: 这是一份安徽省安庆市区二十三校2024-2025学年数学九上开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省合肥市、安庆市名校大联考九上数学开学达标检测模拟试题【含答案】: 这是一份2025届安徽省合肥市、安庆市名校大联考九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省安庆宿松县联考数学九上开学达标检测模拟试题【含答案】: 这是一份2025届安徽省安庆宿松县联考数学九上开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。