安徽省怀远县联考2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)中国“一带一路”战略沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为美元,预计2019年人均收入将达到美元,设2017年到2019年该地区居民年人均收入平均增长率为,可列方程为( )
A.B.
C.D.
2、(4分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当时,如图1,测得AC=2,当时,如图2,则AC的值为( )
A.
B.
C.2
D.
3、(4分)将抛物线y=﹣3x2+1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为( )
A.y=﹣3(x﹣2)2+4B.y=﹣3(x﹣2)2﹣2
C.y=﹣3(x+2)2+4D.y=﹣3(x+2)2﹣2
4、(4分)如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是( )
A.x>3B.x<3C.x>5D.x<5
5、(4分)若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A.B.1C.D.
6、(4分)如图,的中线、交于点,连接,点、分别为、的中点,,,则四边形的周长为( )
A.12B.14C.16D.18
7、(4分)某学习小组 8 名同学的地理成绩是 35、50、45、42、36、38、40、42(单位:分),这组数据 的平均数和众数分别为( )
A.41、42B.41、41C.36、42D.36、41
8、(4分)某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是( )
A.月通话时间低于200分钟选B方案划算
B.月通话时间超过300分钟且少于400分钟选A方案划算
C.月通话费用为70元时,A方案比B方案的通话时间长
D.月通话时间在400分钟内,B方案通话费用始终是50元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点B、C分别在直线y=2x和直线y=kx上,A、D是x轴上两点,若四边形ABCD为矩形,且AB:AD=1:2,则k的值是_____.
10、(4分)计算: _______________.
11、(4分)现用甲、乙两种汽车将吨防洪物资运往灾区,甲种汽车载重吨,乙种汽车载重吨,若一共安排辆汽车运送这些物资,则甲种汽车至少应安排 _________辆.
12、(4分)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
13、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的面积为49,则正方形A、B、C、D的面积之和为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,△OAB,点O为原点,点A、B的坐标分别是(2,1)、(﹣2,4).
(1)若点A、B都在一次函数y=kx+b图象上,求k,b的值;
(2)求△OAB的边AB上的中线的长.
15、(8分)因式分解
(1)a4-16a2 (2)4x2+8x+4
16、(8分)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.
17、(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
18、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.
20、(4分)某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为_____.
21、(4分)利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.
22、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.
23、(4分)如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于MN两点,作直线MN交AD于点E,则△CDE的周长是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
(1)求 k 的取值范围;
(2)写出一个满足条件的 k 的值,并求此时方程的根.
25、(10分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,
(1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.
(2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;
(3)求最低总运费,并说明总运费最低时的运送方案.
26、(12分)如图,菱形ABCD的对角线AC、BD相交于点O,AB=10cm,OA=8cm.
(1)求菱形ABCD的面积;
(2)若把△OBC绕BC的中点E旋转180˚得到四边形OBFC,求证:四边形OBFC是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
用增长后的量=增长前的量×(1+增长率),如果设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意可用x表示1019年年人均收入,然后根据已知可以得出关系式.
【详解】
设1017年到1019年该地区居民年人均收入平均增长率为x,那么根据题意得1019年年人均收入为:300(x+1)1,则
1100=300(x+1)1.
故选:B.
考查了根据实际问题列二次函数关系式,对于平均增长率问题,一般形式为a(1+x)1=b,a为起始时间的有关数量,b为终止时间的有关数量.
2、D
【解析】
图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.
【详解】
如图1,∵AB=BC=CD=DA,∠B=90°,
∴四边形ABCD是正方形,
连接AC,则AB2+BC2=AC2,
∴AB=BC===,
如图2,∠B=60°,连接AC,
∴△ABC为等边三角形,
∴AC=AB=BC=.
本题考查正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.
3、D
【解析】
根据“左加右减、上加下减”的原则进行解答即可.
【详解】
将抛物线y=﹣3x1+1向左平移1个单位长度所得直线解析式为:y=﹣3(x+1)1+1;
再向下平移3个单位为:y=﹣3(x+1)1+1﹣3,即y=﹣3(x+1)1﹣1.
故选D.
此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
4、D
【解析】
由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.
【详解】
解:∵一次函数y=kx+b的图象经过A、B两点,
由图象可知:A(1,0),
根据图象当x<1时,y>0,
即:不等式kx+b>0的解集是x<1.
故选:D.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象
5、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
6、B
【解析】
根据三角形中位线定理,可得ED=FG=BC=4,GD=EF=AO=3,进而求出四边形DEFG的周长.
【详解】
∵BD,CE是△ABC的中线,
∴ED∥BC且ED=BC,
∵F是BO的中点,G是CO的中点,
∴FG∥BC且FG=BC,
∴ED=FG=BC=4,
同理GD=EF=AO=3,
∴四边形DEFG的周长为3+4+3+4=1.
故选B.
本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形中位线的性质定理,为证明线段相等和平行提供了依据.
7、A
【解析】
根据众数和平均数的概念求解.
【详解】
这组数据中42出现的次数最多,
故众数为42,
平均数为: =41.
故选A.
此题考查众数,算术平均数,解题关键在于掌握其定义.
8、D
【解析】
根据通话时间少于200分钟时,A、B两方案的费用可判断选项A;根据300<x<400时,两函数图象可判断选项B;根据月通话费用为70元时,比较图象的横坐标大小即可判断选项C;根据x≤400,根据图象的纵坐标可判断选项D.
【详解】
根据图象可知,当月通话时间低于200分钟时,A方案通话费用始终是30元,B方案通话费用始终是50元,故选项A不合题意;
当300<x<400时,A方案通话费用大于70元,B方案通话费用始终是50元,故选项B不合题意;
当月通话费用为70元时,A方案通话费时间为300分钟,B方案通话费时间大于400分钟,故选项C不合题意;
当x≤400时,B方案通话费用始终是50元.故选项D符合题意.
故选D.
本题主要考查了一次函数的应用,根据题意弄清函数图象横纵坐标、函数图象的位置及交点坐标的实际意义是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据矩形的性质可设点A的坐标为(a,0),再根据点B、C分别在直线y=2x和直线y=kx上,可得点B、C、D的坐标,再由AB:AD=1:2,求得k的值即可.
【详解】
解:∵四边形ABCD为矩形,
∴设点A的坐标为(a,0)(a>0),则点B的坐标为(a,2a),点C的坐标为(a,2a),点D的坐标为(a,0),
∴AB=2a,AD=(﹣1)a.
∵AB:AD=1:2,
∴﹣1=2×2,
∴k=.
故答案为:.
一次函数在几何图形中的实际应用是本题的考点,熟练掌握矩形的性质是解题的关键.
10、1
【解析】根据二次根式乘方的意义与二次根式乘法的运算法则,即可求得答案.
解:(-)1=(-)(-)=1.
故答案为:1.
11、6
【解析】
设甲种汽车安排x辆,则乙种汽车安排10-x辆, 根据两辆汽车载重不少于46吨建立不等式求出其解,即可得出答案.
【详解】
解:设甲种汽车安排x辆,则乙种汽车安排10-x辆,根据题意可得:5x+4(10-x)≥46
解得:x≥6
因此甲种汽车至少应安排6辆.
本题主要考查了一元一次不等式的应用,关键是以载重不少于46吨作为不等量关系列出方程求解.
12、1.1
【解析】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=AB=2.1,
∵DE为△ABC的中位线,
∴DE=BC=4,
∴EF=DE-DF=1.1,
故答案为1.1.
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
13、1
【解析】
根据勾股定理计算即可.
【详解】
解:最大的正方形的面积为1,
由勾股定理得,正方形E、F的面积之和为1,
∴正方形A、B、C、D的面积之和为1,
故答案为1.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
三、解答题(本大题共5个小题,共48分)
14、 (1)k=﹣,b=;(2)AB边上的中线长为.
【解析】
(1)由A、B两点的坐标利用待定系数法可求得k、b的值;
(2)由A、B两点到y轴的距离相等可知直线AB与y轴的交点即为线段AB的中点,利用(1)求得的解析式可求得中线的长.
【详解】
(1)∵点A、B都在一次函数y=kx+b图象上,
∴把(2,1)、(﹣2,4)代入可得 ,解得 ,
∴k=﹣,b=;
(2)如图,设直线AB交y轴于点C,
∵A(2,1)、B(﹣2,4),
∴C点为线段AB的中点,
由(1)可知直线AB的解析式为y=﹣x+,
令x=0可得y=,
∴OC=,即AB边上的中线长为.
此题考查一次函数图象上点的坐标特征,解题关键在于利用待定系数法求解
15、 (1) a2(a+4)(a-4);(2) 4(x+1)2
【解析】
(1)先提取公因式a2,再对余下的多项式利用平方差公式继续分解;
(2)先提取公因式4,再对余下的多项式利用完全平方公式继续分解.
【详解】
(1)a4-16a2,
=a2(a2-16),
=a2(a+4)(a-4);
(2)4x2+8x+4
=4(x2+2x+1)
=4(x+1)2.
考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、(1)见解析;
(2)见解析.
【解析】
(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;
(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.
【详解】
(1)证明:∵AE∥BC,DE∥AB ,
∴四边形ABDE是平行四边形,
∴AE=BD,
∵AD是边BC上的中线,
∴BD=DC,
∴AE=DC,
又∵AE∥BC,
∴四边形ADCE是平行四边形.
(2) 证明:∵∠BAC=90°,AD是边BC上的中线.
∴AD=CD
∵四边形ADCE是平行四边形,
∴四边形ADCE是菱形.
本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.
17、OE=cm
【解析】
根据菱形的性质及三角形中位线定理解答.
【详解】
∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
在直角△BOC中,由勾股定理得:BC5(cm).
∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
18、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、41
【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.
【详解】
在△ABN和△ADN中,
,
∴△ABN≌△ADN,
∴BN=DN,AD=AB=10,
又∵点M是BC中点,
∴MN是△BDC的中位线,
∴CD=2MN=6,
故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,
故答案为:41.
本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.
20、1
【解析】
分析:根据频率= 或频数=频率×数据总和解答.
详解:由题意,该组的人数为:400×0.25=1(人).
故答案为1.
点睛:本题考查了频数与频率之间的计算,熟知频数、频率及样本总数之间的关系是解决本题的关键.
21、
【解析】
的解可看作函数与的交点的横坐标的值,可看作函数与的交点的横坐标的值,根据两者横坐标的大小可判断m,n的大小.
【详解】
解:作出函数的图像,与函数和的图象分别交于一点,所对的横坐标即为m,n的值,如图所示
由图像可得
故答案为:
本题考查了函数与方程的关系,将方程的解与函数图像相结合是解题的关键.
22、
【解析】
根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.
【详解】
∵AB=AD,
∴∠ADB=∠B=15°,
∴∠DAC=∠ADB+∠B=30°,
又∵CD⊥AB,
∴CD=AD=×5=.
故答案为:.
本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.
23、1
【解析】
利用垂直平分线的作法得MN垂直平分AC,则EA=EC,利用等线段代换得到△CDE的周长=AD+CD,然后根据平行四边形的性质可确定周长的值.
【详解】
解:利用作图得MN垂直平分AC,
∴EA=EC,
∴△CDE的周长=CE+CD+ED
=AE+ED+CD
=AD+CD,
∵四边形ABCD为平行四边形,
∴AD=BC=6,CD=AB=4,
∴△CDE的周长=6+4=1.
故答案为1.
本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
二、解答题(本大题共3个小题,共30分)
24、方程的根
【解析】
(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
【详解】
(1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
解得:k< .
(1)当k=0时,原方程为x1+1x=x(x+1)=0,
解得:x1=0,x1=﹣1.
∴当k=0时,方程的根为0和﹣1.
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
25、(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低
【解析】
(1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;
(2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B地运往D地运费代入数值或字母可得;
(3)根据(2)中得到的一次函数关系式,结合函数的性质和取值范围确定总运费最低方案。
【详解】
(1),,
(2)
( )
(3)∵,
∴随的增大而增大。
∵
∴当时,最小.
∴由地运往地400吨,运往地600吨;
由地运往地500吨时运费最低。
本题考查了一次函数的应用,题目较为复杂,理清题中数量关系是解(2)题的关键,利用了一次函数的增减性,结合自变量x的取值范围是解(3)题的关键。
26、(1)96cm2;(2)证明见解析.
【解析】
(1)利用勾股定理,求出OB,继而求出菱形的面积,即可.
(2)求出四边形OBFC的各个角的大小,利用矩形的判定定理,即可证明.
【详解】
解:(1)∵四边形ABCD是菱形
∴AC⊥BD .
在直角三角形AOB中,AB=10cm,OA=8cm
OB===6cm.
∴AC=2OA=2×8=16cm ;BD=2OB=2×6=12cm
∴菱形ABCD的面积=×AC×BD=×16×12=96cm2 .
(2)∵四边形ABCD是菱形
∴AC⊥BD
∴∠BOC=
∴在Rt△BOC中,∠OBC+∠OCB= .
又∵把△OBC绕BC的中点E旋转得到四边形OBFC
∴∠F=∠BOC=,∠OBC=∠BCF
∴∠BCF+∠OCB=,即∠OCF=.
∴四边形OBFC是矩形(有三个角是直角的四边形是矩形).
本题主要考查了菱形及矩形的性质,正确掌握菱形及矩形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
35
40
30
45
安徽省阜阳太和县联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】: 这是一份安徽省阜阳太和县联考2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市怀远县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】: 这是一份安徽省蚌埠市怀远县2024-2025学年数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠怀远县联考2025届数学九年级第一学期开学考试模拟试题【含答案】: 这是一份安徽省蚌埠怀远县联考2025届数学九年级第一学期开学考试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。