![安徽省淮南市2024年九年级数学第一学期开学学业水平测试试题【含答案】第1页](http://www.enxinlong.com/img-preview/2/3/16250067/0-1728883040644/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省淮南市2024年九年级数学第一学期开学学业水平测试试题【含答案】第2页](http://www.enxinlong.com/img-preview/2/3/16250067/0-1728883040758/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省淮南市2024年九年级数学第一学期开学学业水平测试试题【含答案】第3页](http://www.enxinlong.com/img-preview/2/3/16250067/0-1728883040786/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省淮南市2024年九年级数学第一学期开学学业水平测试试题【含答案】
展开这是一份安徽省淮南市2024年九年级数学第一学期开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)二次根式中,x的取值范围在数轴上表示正确的是( )
A.B.
C.D.
2、(4分)下列四组线段中,可以构成直角三角形的是( )
A.1、、B.2、3、4C.1、2、3D.4、5、6
3、(4分)若关于x的不等式组有且仅有5个整数解,且关于y的分式方程有非负整数解,则满足条件的所有整数a的和为( )
A.12B.14C.21D.33
4、(4分)若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A.B.1C.D.
5、(4分)化简的结果是( )
A.3B.2C.2D.2
6、(4分)代数式有意义的取值范围是( )
A.B.C.D.
7、(4分)如图,过正五边形的顶点作直线,则的度数为( )
A.B.C.D.
8、(4分)下列各式中,能与合并的二次根式是 ( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
10、(4分)化简,=______ ;= ________ ;= ______.
11、(4分)如果最简二次根式和是同类二次根式,那么a=_______
12、(4分)已知,则的值等于________.
13、(4分)已知点M(-1,),N(,-2)关于x轴对称,则=_____
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF
(1)求证:CD=EF;
(2)求EF的长.
15、(8分)某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均每株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.
(1)若每盆增加x株,平均每盆盈利y元,写出y关于x的函数表达式;
(2)要使每盆的盈利为10元,且每盆植入株数尽可能少,问每盆应植入多少株?
16、(8分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。
(1)求甲、乙独做各需多少天?
(2)若从节省资金的角度,应该选择哪个工程队?
17、(10分)如图,D为AB上一点,△ACE≌△BCD,AD2+DB2=DE2,试判断△ABC的形状,并说明理由.
18、(10分)如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).
(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;
(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;
(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.
20、(4分)关于x的方程的一个根为1,则m的值为 .
21、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
22、(4分)如果在平行四边形ABCD中,两个邻角的大小是5:4,那么其中较小的角等于_____.
23、(4分)若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.
(1)本次调查的学生人数为______人;
(2)求本次所调查学生读书本数的众数,中位数;
(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?
25、(10分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:
(1)八年级(1)班共有 名学生;
(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数 ;
(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.
26、(12分)临近期末,历史老师为了了解所任教的甲、乙两班学生的历史基础知识背诵情况,从甲、乙两个班学生中分别随机抽取了20名学生来进行历史基础知识背诵检测,满分50分,得到学生的分数相关数据如下:
通过整理,分析数据:两组数据的平均数、中位数、众数如下表:
历史老师将乙班成绩按分数段(,,,,,表示分数)绘制成扇形统计图,如图(不完整)
请回答下列问题:
(1)_______分;
(2)扇形统计图中,所对应的圆心角为________度;
(3)请结合以上数据说明哪个班背诵情况更好(列举两条理由即可).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
【详解】
解:根据题意得3+x≥0,
解得:x≥﹣3,
故x的取值范围在数轴上表示正确的是.
故选:D.
本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义.
2、A
【解析】
求出两小边的平方和、最长边的平方,看看是否相等即可.
【详解】
A、12+()2=()2
∴以1、、为边组成的三角形是直角三角形,故本选项正确;
B、22+3242
∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;
C、 12+2232
∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;
D、 42+5262
∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;
故选A..
本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键.
3、B
【解析】
先解不等式组,根据有5个整数解,确定a的取值2<a≤9,根据关于y的分式方程,得y=,根据分式方程有意义的条件确定a≠4,从而可得a的值并计算所有符合条件的和.
【详解】
解:,
解①得:x≤4,
解②得:x>,
∴不等式组解集为:<x≤4,
∵不等式组有且仅有5个整数解,即0,1,2,3,4,
∴-1≤<0,
∴2<a≤9,
−=1,
去分母得:-y+a-3=y-1,
y=,
∵y有非负整数解,且y≠1,即a≠4,
∴a=6或8,
6+8=14,
故选B.
本题考查了一元一次方程组的解、分式方程的解,此类题容易出错,根据整数解的个数确定字母系数a的值,有难度,要细心.
4、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
5、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
.
故选A.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
6、A
【解析】
解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.
故选A.
7、A
【解析】
由两直线平行,内错角相等及正五边形内角的度数即可求解.
【详解】
解:由正五边形ABCDE可得,
又
故答案为:A
本题主要考查了正多边形的内角及平行线的性质,掌握正多边形内角的求法是解题的关键.正n边形每个内角的度数为.
8、B
【解析】
先化成最简二次根式,再判断即可.
【详解】
解:A、不能与合并,故本选项不符合题意;
B、=,能与合并,故本选项符合题意;
C、=,不能与合并,故本选项不符合题意;
D、=4,不能与合并,故本选项不符合题意.
本题考查了同类二次根式和二次根式的性质等知识点,能理解同类二次根式的定义是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
10、5 5 3
【解析】
直接利用二次根式的性质化简求出即可.
【详解】
=5;=5;=3.
故答案为:5.;5;3.
此题考查二次根式的化简,解题关键在于掌握二次根式的性质.
11、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
12、3
【解析】
将通分后,再取倒数可得结果;或将分子分母同除,代入条件即可得结果.
【详解】
方法一:
∵
∴
方法二:
故答案为3.
本题考查分式的求值,从条件入手或从问题入手,都可以得出结果,将分式变形是解题的关键.
13、1
【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.
【详解】
根据题意,得b=-1,a=2,
则ba=(-1)2=1,
故答案是:1.
考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)EF=.
【解析】
(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC,得出四边形CDEF是平行四边形,即可得出CD=EF;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长即可得答案.
【详解】
(1)∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∵使CF=BC,
∴DE=FC,
∴四边形CDEF是平行四边形,
∴CD=EF.
(2)∵四边形DEFC是平行四边形,
∴CD=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=CD==.
本题考查等边三角形的性质、平行四边形的判定与性质及三角形中位线的性质,三角形的中位线平行于第三边,且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
15、(1)y=﹣2.5x2+1.5x+9;(2)4株
【解析】
(1)设每盆花苗增加x株,则每盆花苗有(x+3)株, 平均单株盈利为(3﹣2.5x)元,根据“每盆盈利=每盆花苗株数×单株盈利”,列函数式即可;
(2)由题(1)得“每盆花苗株数×单株盈利=1”,解一元二次方程,在两根中取较小正整数就为增加的株数,则每盆的株数可求.
【详解】
(1)解:由题意知:每盆花苗增加x株,则每盆花苗有(x+3)株,
平均单株盈利为:(3﹣2.5x)元,
则:y=(x+3)(3﹣2.5x)=﹣2.5x2+1.5x+9
(2)解:由题意得:(x+3)(3﹣2.5x)=1.
化简,整理得x2﹣3x+2=2.
解这个方程,得x1=1,x2=2,
则3+1=4,2+3=5,
答:每盆应植4株.
本题考查一元二次方程的应用,解题关键在于读懂题意列出方程.
16、(1)10 15 (2)选甲比较节约资金.
【解析】
(1)设甲独做要x天,乙独做要y天,根据题意列方程即可.
(2)设甲独做要1天要m元,乙独做要1天要n元,再计算每个工程队的费用进行比较即可.
【详解】
(1)设甲独做要x天,乙独做要y天
解得:
故甲独做要10天,乙独做要15天
(2)设甲独做要1天要m元,乙独做要1天要n元
解得
甲独做要的费用为:
乙独做要的费用为:
所以选甲
本题主要考查二元一次方程组的应用,是常考点,应当熟练掌握.
17、△ABC是等腰直角三角形,理由见解析.
【解析】
试题分析:根据全等三角形的性质得出AC=BC,∠EAC=∠B,AE=BD,根据勾股定理的逆定理得出∠EAD=90°,求出∠ACB=90°,即可求出答案.
试题解析:△ABC是等腰直角三角形,
理由是:∵△ACE≌△BCD,
∴AC=BC,∠EAC=∠B,AE=BD,
∵AD2+DB2=DE2,
∴AD2+AE2=DE2,
∴∠EAD=90°,
∴∠EAC+∠DAC=90°,
∴∠DAC+∠B=90°,
∴∠ACB=180°﹣90°=90°,
∵AC=BC,
∴△ABC是等腰直角三角形.
18、(1)t=;(2)y-t2+4t(0<t≤8);(3)t=时,点C在PF的中垂线上.
【解析】
(1)根据当EF=PC时,四边形PCFE是平行四边形,列出关于t的等式求解即可;
(2)作EH⊥BC,用t表示出BP、EH即可得△EBP的面积y;
(3)根据PC=CF,列出关于t的等式即可求.
【详解】
(1)如图1中,
∵EF∥PC,
∴当EF=PC时,四边形PCFE是平行四边形,
∴t=8-2t,
∴t=.
(2)如图2中,作EH⊥BC于H.
在Rt△EBH中,∵BE=8-t,∠B=60°,
∴EH=BE•sin60°=(8-t)•,
∴y=•BP•EH=•2t•(8-t)=-t2+4t(0<t≤8).
(3)如图3中,当点P在BC的延长线上时,PC=CF时,点C在PF的中垂线上.
∴2t-8=8-t,
∴t=,
∴t=时,点C在PF的中垂线上.
本题考查的知识点是三角形的综合运用,解题关键是作辅助线进行解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设B的坐标为(2a,2b),E点坐标为(x,2b),D点坐标为(2a,y),因为D、E、M在反比例函数图象上,则ab=k,2bx=k, 2ay=k, 根据四边形ODBE的面积列式,求得k值,再由2bx×2ay=4abxy=k2=9, 求得xy的值,然后根据所求的结果求出△BED的面积,则△ODE的面积就是四边形ODBE的面积和△BED的面积之差.
【详解】
解:设B的坐标为(2a,2b), 则M点坐标为(a,b),
∵M在AC上,
∴ab=k(k>0),
设E点坐标为(x,2b),D点坐标为(2a,y),
则2bx=k, 2ay=k,
∴S四边形ODBE=2a×2b-×(2bx+2ay)=9,
即4k- (k+k)=9,
解得k=3,
∵2bx×2ay=4abxy=k2=9,
∴4abxy=9,
解得:xy=,
则S△BED=BE×BD=
,
∴ S△ODE = S四边形ODBE -S△BED=9-
本题主要考查反比函数与几何综合,解题关键在于利用面积建立等式求出k.
20、1
【解析】
试题分析:把x=1代入方程得:1-2m+m=0,解得m=1.
考点:一元二次方程的根.
21、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
22、80°
【解析】
根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=4:5,求出∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=4:5,
∴∠B=×180°=80°,
故答案为:80°.
本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键.
23、0(答案不唯一)
【解析】
利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.
【详解】
△=62-4m≥0,
解得m≤9;
当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,
所以m=0满足条件.
故答案为:0(答案不唯一).
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
二、解答题(本大题共3个小题,共30分)
24、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约3600本
【解析】
将条形图中的数据相加即可;
根据众数和中位数的概念解答即可;
先求出平均数,再解答即可.
【详解】
,
故答案为20;
由条形统计图知,调查学生读书本数最多的是4本,
故众数是4本
在调查的20人读书本数中,从小到大排列中第9个和第10个学生读的本数都是4本,
故中位数是4本;
故答案为4;4;
每个人读书本数的平均数是:
(本),
总数是:(本)
答:估计该校学生这学期读书总数约3600本.
本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.
25、(1)50;(2)见解析;57.6°;(3)368.
【解析】
(1)根据“不得奖”人数及其百分比可得总人数;
(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;
(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.
【详解】
解:(1)八年级(1)班共有 =50
(2)获一等奖人数为:50×10%=5(人),
补全图形如下:
∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,
“二等奖”对应的扇形的圆心角度数是×16%=57.6,
(3)(名)
此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据
26、(1) (2) (3)见解析
【解析】
(1)利用中位数的定义确定的值即可; (2)用40≤x<45范围内的人数除以总人数乘以周角的度数即可; (3)利用平均数、中位数的意义列举即可.
【详解】
解:(1)∵共20人,
∴中位数是第10或11人的平均数,为42分和43分,
即: ,
故答案为:42.5;
(2)两组中40≤x<45共有7+7=14人,
所以40≤x<45的圆心角为,
故答案为:.
(3)∵41<41.8 ∴从平均数角度看乙班成绩好;
∵41<42.5,
∴从中位数角度看乙班成绩好.
本题考查了扇形统计图的知识,解题的关键是仔细的读题并从中进一步整理出解题的有关信息.
题号
一
二
三
四
五
总分
得分
甲
32
35
46
23
41
49
37
41
36
41
37
44
39
46
46
41
50
43
44
49
乙
25
34
43
46
35
41
42
46
44
42
47
45
42
34
39
47
49
48
45
42
平均数(分)
中位数(分)
众数(分)
甲
41
41
乙
41.8
42
相关试卷
这是一份安徽省淮南市西部2024年九上数学开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省阜阳地区2025届数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省六安市名校数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。