|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】
    立即下载
    加入资料篮
    安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】01
    安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】02
    安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】

    展开
    这是一份安徽省淮南市名校2024-2025学年九上数学开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知反比例函数y=kx-1的图象过点A(1,-2),则k的值为( )
    A.1B.2C.-2D.-1
    2、(4分)将方程化成一元二次方程的一般形式,正确的是( ).
    A.B.C.D.
    3、(4分)矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是( )
    A.3
    B.4
    C.5
    D.6
    4、(4分)若关于x的方程的解为负数,则m的取值范围是( )
    A.B.C.D.
    5、(4分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是( )
    A.y3<y1<y2 B.y1<y2<y3 C.y3>y1>y2 D.y1>y2>y3
    6、(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,若BC=3,∠ABC=60°,则BD的长为( )
    A.2B.3C.D.
    7、(4分)如果一个多边形的内角和是外角和的3倍,那么这个多边形是( )
    A.四边形B.六边形C.八边形D.十边形
    8、(4分)如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为( )
    A.150B.200C.225D.无法计算
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
    10、(4分)己知反比例函数的图像经过第一、三象限,则常数的取值范围是___.
    11、(4分)当x________时,分式有意义.
    12、(4分)如果最简二次根式和是同类二次根式,那么a=_______
    13、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知x=,y=,求下列各式的值:
    (1)x2-xy+y2;
    (2).
    15、(8分)如图,在中,的角平分线交于点,交的延长线于点,连接.
    (1)请判断的形状,并说明理由;
    (2)已知,,求的面积.
    16、(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.
    (1)求A、B、C三点坐标;(2)求△ABC的面积.
    17、(10分)某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:
    (1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.
    (2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.
    (3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
    18、(10分)关于的方程有两个不相等的实数根.
    求实数的取值范围;
    是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.
    20、(4分)如图,矩形ABCD中,对角线AC与BD相交于点O,AB=3,BC=4,则△AOB的周长为_____.
    21、(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是 .
    22、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
    23、(4分)如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知非零实数满足,求的值.
    25、(10分)已知直线y=kx+b经过点(2,﹣3)与点(﹣1,2),求k与b.
    26、(12分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.
    (1)求出三点的坐标.
    (2)求直线的函数表达式.
    (3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    直接把点(1,-2)代入反比例函数y= 即可得出结论.
    【详解】
    ∵反比例函数y=的图象过点A(1,−2),
    ∴−2= ,
    解得k=−2.
    故选C.
    此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
    2、B
    【解析】
    通过移项把方程4x2+5x=81化成一元二次方程的一般形式.
    【详解】
    方程4x2+5x=81化成一元二次方程的一般形式是4x2+5x-81=1.
    故选B.
    此题主要考查了一元二次方程的一般形式,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=1(a≠1).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.
    3、A
    【解析】
    由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,
    ∵折叠,
    ∴CD=CF=10,EF=DE,
    在Rt△BCF中,BF==6,
    ∴AF=AB-BF=10-6=4,
    在Rt△AEF中,AE2+AF2=EF2,
    ∴AE2+16=(8-AE)2,
    ∴AE=3,
    故选A.
    本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.
    4、B
    【解析】
    先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
    【详解】
    解:∵1x-m=1+x,
    ∴x=,
    ∵关于x的方程1x-m=1+x的解是负数,
    ∴<0,
    解得m<-1.
    故选:B.
    本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
    5、D
    【解析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.
    6、C
    【解析】
    只要证明△ABC是正三角形,由三角函数求出BO,即可求出BD的长.
    【详解】
    解:∵四边形ABCD菱形,
    ∴AC⊥BD,BD=2BO,AB=BC,
    ∵∠ABC=60°,
    ∴△ABC是正三角形,
    ∴∠BAO=60°,
    ∴BO=sin60°•AB=3×,
    ∴BD=.
    故选C.
    本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.
    7、C
    【解析】
    设这个多边形是n边形,根据题意得:(n–2)•110°=3×360°,解得:n=1.故选C.
    8、C
    【解析】
    小正方形的面积为AC的平方,大正方形的面积为BC的平方,两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2,AB=15,故可以求出两正方形面积的和.
    【详解】
    正方形ADEC的面积为: AC2 ,
    正方形BCFG的面积为:BC2 ;
    在Rt△ABC中,AB2 = AC2+ BC2,AB=15,
    则AC2 + BC2 = 225cm2,
    故选:C.
    此题考查勾股定理,熟记勾股定理的计算公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(8,0)
    【解析】
    连接任意两对对应点,看连线的交点为那一点即为位似中心.
    【详解】
    解:连接BB1,A1A,易得交点为(8,0).
    故答案为:(8,0).
    用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.
    10、
    【解析】
    根据反比例函数的性质可得3k+1>0,再解不等式即可.
    【详解】
    ∵双曲线的图象经过第一、三象限,
    ∴3k+1>0,
    解得.
    故答案为:.
    此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质.对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.
    11、
    【解析】
    根据分母不等于0列式求解即可.
    【详解】
    由题意得,x−1≠0,
    解得x≠1.
    故答案为:≠1.
    本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.
    12、3
    【解析】
    分析:根据同类二次根式的被开方式相同列方程求解即可.
    详解:由题意得,
    3a+4=25-4a,
    解之得,
    a=3.
    故答案为:3.
    点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
    13、.
    【解析】
    设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
    【详解】
    解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
    ∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
    ∴∠OAD=∠BOE,
    同理可得∠AOD=∠OBE,
    在△AOD和△OBE中, ,
    ∴△AOD△OBE(ASA),
    ∵点B在第四象限,
    ∴,即,
    解得,
    ∴反比例函数的解析式为:.
    故答案为.
    本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1) ;(2) 12.
    【解析】
    试题分析: 由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.
    试题解析:
    (1)∵x=,y=,
    ∴x+y=,xy=,
    ∴x2-xy+y2=(x+y)2-3xy=7-=;
    (2)===12.
    15、 (1)是等腰三角形,理由见解析;(2).
    【解析】
    (1)根据平行四边形的性质证得∠F=∠DAF,从而得到结论;
    (2)利用S平行四边形ABCD=2S△ADE求解即可.
    【详解】
    (1)是等腰三角形,利用如下:
    ∵四边形为平行四边形,
    ∴.
    ∴.
    ∵平分,
    ∴.
    ∴.
    ∴.
    即是等腰三角形
    (2)∵在等腰中,,
    ∴.

    在中,


    ∴.
    考查了平行四边形的性质及解直角三角形的知识,体现了转化的数学思想.
    16、(1)A(,),B(),C(5,0)(2)
    【解析】
    解:(1)由题意得,令直线l1、直线l2中的y为0,得:x1=-,x2=5,
    由函数图象可知,点B的坐标为(-,0),点C的坐标为(5,0),
    ∵l1、l2相交于点A,
    ∴解y=2x+3及y=-x+5得:x=,y=
    ∴点A的坐标为(,);
    (2)由(1)题知:|BC|=,
    又由函数图象可知S△ABC=×|BC|×|yA|=××=
    17、(1)y=20―3x;
    (2)三种方案,即:
    方案一:甲种3辆 乙种11辆 丙种6辆
    方案二:甲种4辆 乙种8辆 丙种8辆
    方案三:甲种5辆 乙种5辆 丙种10辆
    (3)方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。
    【解析】
    (1)由8x+6y+5(20-x-y)=120得y=20-3x
    (2)由得3≤x≤且x为正整数,故3,4,5
    车辆安排有三种方案:
    方案一:甲种车3辆;乙种车11辆;丙种车6辆;
    方案二:甲种车4辆;乙种车8辆;丙种车8辆;
    方案三:甲种车5辆;乙种车5辆;丙种车10辆;
    (3)设此次销售利润为w元.
    w=8x×12+6(20-x)×16+5[20-x-(20-3x)]×10=1920-92x
    w随x的增大而减小,由(2):x=3,4,5
    ∴ 当x=3时,W最大=1644(百元)=16.44万元
    答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元
    18、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
    【解析】
    由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.
    首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.
    【详解】
    解:依题意得,

    又,
    的取值范围是且;
    解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,
    理由是:设方程的两根分别为,,
    由根与系数的关系有:,
    又因为方程的两个实数根之和等于两实数根之积的算术平方根,


    由知,,且,
    不符合题意,
    因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.
    本题重点考查了一元二次方程的根的判别式和根与系数的关系。
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据题意可以画出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.
    【详解】
    如图所示,
    当BA=BP1时,△ABP1是等腰三角形,
    当BA=BP2时,△ABP2是等腰三角形,
    当AB=AP3时,△ABP3是等腰三角形,
    当AB=AP4时,△ABP4是等腰三角形,
    当BA=BP5时,△ABP5是等腰三角形,
    当P1A=P1B时,△ABP1是等腰三角形,
    故答案为1.
    本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.
    20、1
    【解析】
    由矩形的性质可得AC=BD,AO=CO,BO=DO,∠ABC=90°,由勾股定理可求AC=5,即可求△AOB的周长.
    【详解】
    ∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ABC=90°.
    ∵AB=3,BC=4,∴AC5,∴AO=BO,∴△AOB的周长=AB+AO+BO=3+5=1.
    故答案为:1.
    本题考查了矩形的性质,勾股定理,求出AO=BO的长是本题的关键.
    21、直角三角形
    【解析】
    熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.即可得出.
    【详解】
    △ABC是直角三角形.
    本题考查了勾股定理的逆定理,熟练掌握定理是解题的关键.
    22、
    【解析】
    如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.
    【详解】
    如图,构造一线三等角,使得.
    ∵a∥c,
    ∴∠1=∠AFD=60°,
    ∴∠2+∠CAF=60°.
    ∵a∥b,
    ∴∠2=∠3,
    ∴∠3+∠CAF=60°.
    ∵∠3+∠4=60°,
    ∴∠4=∠CAF,
    ∵b∥c,
    ∴∠4=∠5,
    ∴∠5=∠CAF,
    又∵AC=BC,∠AFC=∠CGB,
    ∴,
    ∴CG=AF.
    ∵∠ACF=60°,
    ∴DAF=30°,
    ∴DF=AF,
    ∵AF2=AD2+DF2,
    ∴,
    ∴,
    同理可求,
    ∴,
    ∴.
    本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.
    23、
    【解析】
    由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,
    结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x, 用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=, 则.
    【详解】
    解:∵四边形ABCD为菱形,
    ∴DC∥AB,
    ∴∠CDE+∠DEB=180°,
    ∵DE⊥AB,
    ∴DE⊥DC,
    ∵∠DCE=30°,
    设DE=x, 则EC=2x,

    ∴AD=DC=,
    在Rt△AED中,有AD2=DE2+AE2 ,
    解得x=,

    故答案为:.
    本题考查菱形的基本性质,能够灵活运用勾股定理是本题关键.
    二、解答题(本大题共3个小题,共30分)
    24、1
    【解析】
    由题设知a≥3,化简原式得,根据非负数的性质先求出a,b的值,从而求得a+b的值.
    【详解】
    解:∵a≥3,
    ∴原等式可化为,
    ∴b+2=0且(a-3)b2=0,
    ∴a=3,b=-2,
    ∴a+b=1.
    本题考查了二次根式有意义的条件及非负数的性质,几个非负数的和为零,则每一个数都为零.
    25、
    【解析】
    把(2,-3)与点(-1,2)代入y=kx+b得到关于k、b的二元一次方程组,解方程组即可求出k、b的值.
    【详解】
    依题意,得:,
    解得:
    本题考查了待定系数法求直线的解析式,是求函数解析式常用的方法,需要熟练掌握.
    26、(1),,;(2);(3)存在,,,.
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点B,C的坐标,联立直线l1,l2的解析式成方程组,通过解方程组可求出点A的坐标;
    (2)过点A作AF⊥y轴,垂足为点F,则△ACF≌△CDO,利用全等三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法即可求出直线CD的解析式;
    (3)分OC为对角线及OC为边两种情况考虑:①若OC为对角线,由菱形的性质可求出点P的纵坐标,再利用一次函数图象上点的坐标特征可求出点P1的坐标;②若OC为边,设点P的坐标为(m,2m+6),分CP=CO和OP=OC两种情况,利用两点间的距离公式可得出关于m的方程,解之取其负值,再将其代入点P的坐标中即可得出点P2,P3的坐标.
    【详解】
    (1)∵直线:,
    ∴当时,;当时,,
    ∴,,
    解方程组:得:,
    ∴点的坐标为;
    (2)如图1,作,则,
    ∵四边形为正方形,
    ∴,
    ∵,,
    ∴,

    ∴,
    ∴,
    ∵,,
    ∴,

    设直线的解析式为,
    将、代入得:,
    解得:,
    ∴直线的解析式为
    (3)存在
    ①以为对角线时,如图2所示,
    则PQ垂直平分CO,
    则点P的纵坐标为:,
    当y=3时,,解得:x=
    ∴点;
    ②以为边时,如图2,设点P(m,2m+6),
    当CP=CO时,,
    解得:(舍去)
    ∴,
    当OP=OC时,,
    解得:(舍去)

    综上所述,在平面内是否存在点,使得以、、、为顶点的四边形是菱形,,,.
    本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式、菱形的性质以及两点间的距离,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B,C的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)分OC为对角线及OC为边两种情况,利用菱形的性质求出点P的坐标.
    题号





    总分
    得分
    批阅人
    土特产种类



    每辆汽车运载量(吨)
    8
    6
    5
    每吨土特产获利(百元)
    12
    16
    10
    相关试卷

    安徽省淮南市谢家集区2024-2025学年数学九上开学学业质量监测试题【含答案】: 这是一份安徽省淮南市谢家集区2024-2025学年数学九上开学学业质量监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年辽宁省营口市名校九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】: 这是一份2024-2025学年辽宁省铁岭市名校九上数学开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map