安徽省寿县2024年数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.
其中合理的是( )
A.①B.②C.①②D.①③
2、(4分)已知,则的值是( )
A.B.C.D.
3、(4分)将一次函数的图象向上平移2个单位,平移后,若,则x的取值范围是( )
A.B.C.D.
4、(4分)如图,在△ABC中,AB=AC,AD是中线,DE⊥AB,DF⊥AC,垂足分别为E,F,则下列四个结论中:①AB上任一点与AC上任一点到D的距离相等;②AD上任一点到AB,AC的距离相等;③∠BDE=∠CDF;④∠1=∠2;其中正确的有( )
A.1个B.2个C.3个D.4个
5、(4分)下列各点中,在反比例函数y=图象上的是( )
A.(2,3)B.(﹣1,6)C.(2,﹣3)D.(﹣12,﹣2)
6、(4分)将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是( ).
A.5B.C.或4D.5或
7、(4分)如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
8、(4分)函数中自变量x的取值范围是( )
A.x≥ 1 B.x≤ 1 C.x≠ 1 D.x> 1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______
10、(4分)已知直线过点和点,那么关于的方程的解是________.
11、(4分)在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为_____.
12、(4分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若BD=2,CD=1,则AC的长是_______.
13、(4分)已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)解一元二次方程.
(1) (2)
15、(8分)如图,在坐标系中,△ABC中A(-2,-1)、B(-3,-4)、C(0,-3).
(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;
(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的所有可能的坐标.
16、(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
17、(10分)解方程:
(1)2x2﹣3x+1=1.
(2)x2﹣8x+1=1.(用配方法)
18、(10分)如图,E、F分别平行四边形ABCD对角线BD上的点,且BE=DF.
求证:∠DAF=∠BCE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当x________时,分式有意义.
20、(4分) “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:
①“龟兔再次赛跑”的路程为1000米;
②兔子和乌龟同时从起点出发;
③乌龟在途中休息了10分钟;
④兔子在途中750米处追上乌龟.
其中正确的说法是 .(把你认为正确说法的序号都填上)
21、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.
22、(4分)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二,三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,如果设这辆车第二、三年的年折旧率为x,那么根据题意,列出的方程为_____.
23、(4分)如图,三个边长均为1的正方形按如图所示的方式摆放,A1,A2分别是正方形对角线的交点,则重叠部分的面积和为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知一次函数的图象经过A(0,-3)、B(4,0)两点.
(1)求这个一次函数的解析式;
(2)若过O作OM⊥AB于M,求OM的长.
25、(10分)如图,甲乙两船从港口A 同时出发,甲船以16海里/时的速度向南偏东 50°航行,乙船向北偏东 40°航行,3小时后,甲船到达B岛,乙船到达C岛,若C,B两岛相距60海里,问乙船的航速是多少?
26、(12分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,
求证:(1);
(2).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.
【详解】
解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.
故选:B.
本题考查了利用频率估计概率,明确概率的定义是解题的关键.
2、D
【解析】
∵,∴设出b=5k,得出a=13k,把a,b的值代入,得,
.故选D.
3、B
【解析】
试题分析:利用一次函数平移规律得出平移后解析式,进而得出图象与坐标轴交点坐标,进而利用图象判断y>0时,x的取值范围. ∵将一次函数y=x的图象向上平移2个单位,
∴平移后解析式为:y=x+2, 当y=0时,x=﹣4, 当x=0时,y=2, 如图: ∴y>0,
则x的取值范围是:x>﹣4,
考点:一次函数图象与几何变换.
4、C
【解析】
试题分析:根据等腰三角形的三线合一定理可得:∠1=∠2,∠BDE=∠CDF,根据角平分线的性质可知:AD上任一点到AB、AC的距离相等,故正确的有3个,选C.
5、A
【解析】
根据反比例函数图象上点的坐标特征进行判断.即当时在反比例函数y=图象上.
【详解】
解:∵2×3=6,﹣1×6=﹣6,2×(﹣3)=﹣6,﹣12×(﹣2)=24,
∴点(2,3)在反比例函数y=图象上.
故选:A.
本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.
6、D
【解析】
根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.
【详解】
解:∵△ABC沿EF折叠B和B′重合,
∴BF=B′F,
设BF=x,则CF=10-x,
∵当△B′FC∽△ABC,
,
∵AB=8,BC=10,
∴,解得:x=,
即:BF=,
当△FB′C∽△ABC,,
,
解得:x=5,
故BF=5或,
故选:D.
本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.
7、C
【解析】
选项①∠AED=90°-∠EAD,∠ADC=90°-∠DAC,∠EAD=∠DAC;
②易证△ADE∽△ACD,得DE:DA=DC:AC=3:AC,AC不一定等于6;
③根据相似三角形的判定定理得出△BED∽△BDA,再由相似三角形的对应边成比例即可得出结论;
④连接DM,可证DM∥BF∥AC,得FM:MC=BD:DC=4:3;易证△FMB∽△CMA,得比例线段求解.
【详解】
∠AED=90°−∠EAD,∠ADC=90°−∠DAC,
∵AD平分∠BAC
∴∠EAD=∠DAC,
∴∠AED=∠ADC.
故①选项正确;
∵∠EAD=∠DAC,∠ADE=∠ACD=90°,
∴△ADE∽△ACD,得DE:DA=DC:AC=3:AC,但AC的值未知,
故②不一定正确;
由①知∠AED=∠ADC,
∴∠BED=∠BDA,
又∵∠DBE=∠ABD,
∴△BED∽△BDA,
∴DE:DA=BE:BD,由②知DE:DA=DC:AC,
∴BE:BD=DC:AC,
∴AC⋅BE=BD⋅DC=12.
故③选项正确;
连接DM,则DM=MA.
∴∠MDA=∠MAD=∠DAC,
∴DM∥BF∥AC,
由DM∥BF得FM:MC=BD:DC=4:3;
由BF∥AC得△FMB∽△CMA,有BF:AC=FM:MC=4:3,
∴3BF=4AC.
故④选项正确.
综上所述,①③④正确,共有3个.
故选C.
此题考查相似三角形的判定与性质,角平分线的性质,解题关键在于作辅助线.
8、A
【解析】
试题分析:当x+1≥0时,函数有意义,所以x≥ 1,故选:A.
考点:函数自变量的取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-3
kx+b>x+a>0的解集是一次函数y1=kx+b在y2=x+a的图象的上边部分,且在x轴上方部分,对应的x的取值范围,据此即可解答.
【详解】
解:观察图像可得:kx+b>x+a>0的解集是-3
10、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
11、2
【解析】
根据正方形的面积公式可求正方形面积.
【详解】
正方形面积==2
故答案为2.
本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.
12、
【解析】
作DE⊥AB于E,根据角平分线的性质得到DE=DC,根据勾股定理求出BE,再根据勾股定理计算即可.
【详解】
解:作DE⊥AB于E,
∵AD是∠BAC的平分线,∠ACB=90°,DE⊥AB,
∴DE=DC=1,
在Rt△ACD和Rt△AED中,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
由勾股定理得,
设AC=AE=x,
由勾股定理得x2+32=(x+)2,
解得x=.
∴AC=.
故答案为:.
本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
13、1
【解析】
分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.
【详解】
解:当m=1时,原方程为2x+1=1,
解得:x=﹣,
∴m=1符合题意;
当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,
∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,
解得:m≤且m≠1.
综上所述:m≤.
故答案为:1.
本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)x1=3,x2=6; (2) x1=2+,x2=2-.
【解析】
(1)利用因式分解法即可求解;
(2)利用配方法解方程即可求解.
【详解】
(1)
∴
∴
∴,,
解得:x1=3,x2=6;
(2)
∴
∴,
∴,
解得x1=2+,x2=2-.
此题分别考查了一元二次方程的几种解法,解题的关键是根据不同的方程的形式选择最佳方法解决问题.
15、(1)画图略,A’(2,1)(2)(1,0)或(-1,-6)或(-5,-2)
【解析】
(1)找到三角形各顶点与原点对称点,再连接各点即可;
(2)根据平行四边形的性质即可在直角坐标系中找到D点.
【详解】
(1)如图,△A′B′C′为所求,A’(2,1)
(2)如图,D的坐标为(1,0)或(-1,-6)或(-5,-2)
此题主要考查坐标与图形,解题的关键是熟知直角坐标系的坐标特点.
16、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
17、(1)x1=,x2=1;(2)x1=4+,x2=4﹣
【解析】
(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)移项,配方,开方,即可得出两个一元一次方程,求出方程的解即可.
【详解】
解:(1)2x2﹣3x+1=1,
(2x﹣1)(x﹣1)=1,
2x﹣1=1,x﹣1=1,
x1=,x2=1;
(2)x2﹣8x+1=1,
x2﹣8x=﹣1,
x2﹣8x+16=﹣1+16,
(x﹣4)2=15,
x﹣4=±,
x1=4+,x2=4﹣.
本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.
18、详见解析
【解析】
只要证明△ADF≌△CBE即可解决问题.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠ADB=∠CBD,
∵DF=BE,
∴△ADF≌△CBE,
∴∠DAF=∠BCE.
本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据分母不等于0列式求解即可.
【详解】
由题意得,x−1≠0,
解得x≠1.
故答案为:≠1.
本题考查分式有意义的条件,熟练掌握分式的基本性质是解题关键.
20、①③④
【解析】
根据图象可知:
龟兔再次赛跑的路程为1000米,故①正确;
兔子在乌龟跑了40分钟之后开始跑,故②错误;
乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;
y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,
此时20x﹣200=100x﹣4000,解得:x=47.5,
y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确,
综上可得①③④正确.
21、6cm
【解析】
根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.
【详解】
解::如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB.
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.
本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.
22、20(1﹣20%)(1﹣x)2=11.1.
【解析】
设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1-20%)(1-x)元,第三年折旧后的而价格为20(1-20%)(1-x)2元,与第三年折旧后的价格为11.1万元建立方程.
【详解】
设这辆车第二、三年的年折旧率为x,有题意,得
20(1﹣20%)(1﹣x)2=11.1.
故答案是:20(1﹣20%)(1﹣x)2=11.1.
一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.1万元建立方程是关键.
23、
【解析】
过点A1分别作正方形两边的垂线A1D与A1E,根据正方形的性质可得A1D=A1E,再根据同角的余角相等求出∠BA1D=∠CA1E,然后利用“角边角”证明△A1BD和△A1CE全等,根据全等三角形的面积相等求出阴影部分的面积等于正方形面积的,即可求解.
【详解】
如图,过点A1分别作正方形两边的垂线A1D与A1E,
∵点A1是正方形的中心,
∴A1D=A1E,
∵∠BA1D+∠BA1E=90°,∠CA1E+∠BA1E=90°,
∴∠BA1D=∠CA1E,A1D=A1E,∠A1DB=∠A1EC=90°,
∴△A1BD≌△A1CE(ASA),
∴△A1BD的面积=△A1CE的面积,
∴两个正方形的重合面积=正方形面积=,
∴重叠部分的面积和为×2=.
故答案是:.
考查了全等三角形的判定与性质,正方形的性质,作辅助线构造出全等三角形求出阴影部分的面积是正方形的面积的是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)y=x-3;(2)OM=.
【解析】
(1)设一次函数的解析式为y=kx+b,用待定系数法求解即可;
(2)先根据勾股定理求出AB的长,再用等面积法求解即可.
【详解】
(1)设一次函数的解析式为y=kx+b,
把A(0,-3)、B(4,0)两点代入y=kx+b得:
,
解得,
故一次函数的解析式y=x-3;
(2)在△OAB中,OB=4,OA=3,由勾股定理得AB2=OA2+OB2,即AB2=32+42,
则AB=5,
∵= AB×OM =OA×OB,
即OM==.
本题考查了待定系数法求一次函数解析式,勾股定理及等积法求线段的长,熟练掌握待定系数法是解答本题的关键.
25、乙船的速度是12海里/ 时.
【解析】
试题分析:首先理解方位角的概念,根据所给的方位角得到∠CAB=90°.根据勾股定理求得乙船所走的路程,再根据速度=路程÷时间,计算即可.
试题解析:
根据题意,得∠CAB=180°-40°-50°=90°,
∵AC=16×3=48(海里),BC=60海里,
∴在直角三角形ABC中,根据勾股定理得:AB=(海里).
则乙船的速度是36÷3=12海里/时.
26、(1)证明见详解;(2)证明见详解.
【解析】
(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.根据全等三角形的性质得到AE=MG,∠MGO=∠AEO,根据三角形的内角和得到∠MGA+∠GAE=180°,根据正方形的性质得到AG=AB,AE=AC,∠BAG=∠CAE=90°,根据全等三角形的性质得到AM=BC,等量代换即可得到结论;
(2)根据全等三角形的性质得到∠M=∠EAO,∠M=∠ACB,等量代换得到∠EAO=∠ACB,求得∠AHC=90°,根据垂直的定义即可得到结论.
【详解】
解:(1)如图,延长AO到M,使OM=AO,连接GM,延长OA交BC于点H.
∵O为EG的中点,
∴OG=OE,
在△AOE与△MOG中,,
∴△AOE≌△MOG(SAS),
∴AE=MG,∠MGO=∠AEO,
∴∠MGA+∠GAE=180°,
∵四边形ABFG和四边形ACDE是正方形,
∴AG=AB,AE=AC,∠BAG=∠CAE=90°,
∴AC=GM,∠GAE+∠BAC=180°,
∴∠BAC=∠AGM,
在△AGM与△ABC中,,
∴△AGM≌△ABC(SAS),
∴AM=BC,
∵AM=2AO,
∴;
(2)由(1)知,△AOE≌△MOG,△AGM≌△ABC,
∴∠M=∠EAO,∠M=∠ACB,
∴∠EAO=∠ACB,
∵∠CAE=90°,
∴∠OAE=∠CAH=90°,
∴∠ACB+∠CAH=90°,
∴∠AHC=90°,
∴AH⊥BC.
即.
本题考查了正方形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
安徽省怀远县联考2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份安徽省怀远县联考2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省来安县联考数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2025届安徽省来安县联考数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省淮北市烈山区数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2025届安徽省淮北市烈山区数学九年级第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。