安徽省舒城县2024年九上数学开学质量跟踪监视模拟试题【含答案】
展开
这是一份安徽省舒城县2024年九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)(2016广西贵港市)式子在实数范围内有意义,则x的取值范围是( )
A.x<1B.x≤1C.x>1D.x≥1
2、(4分)如果等边三角形的边长为4,那么等边三角形的中位线长为
A.B.4C.6 D.8
3、(4分)如果分式的值为零,则a的值为( )
A.±1B.2C.﹣2D.以上全不对
4、(4分)某校为了了解学生在校午餐所需的时间,抽查了 20 名同学在校午餐所需的时间,获得如 下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为 5组,则组距是( )
A.4 分B.5 分C.6 分D.7 分
5、(4分)若代数式在实数范围内有意义,则x的取值范为是( )
A.x≥-2B.x>-2C.x≥2D.x≤2
6、(4分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是( )
A.y=xB.y=1﹣xC.y=x+1D.y=x﹣1
7、(4分)如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C,BE 平分∠ABC 交 AC 于 E,AD⊥BE 于 D,下列结论:①AC﹣BE=AE;②点 E 在线段 BC 的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的个数有( )
A.1 个B.2 个C.3 个D.4 个
8、(4分)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是( )
A.甲B.乙
C.甲、乙的成绩一样稳定D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.
10、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
11、(4分)已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)
12、(4分)在△ABC中,AB=17cm,AC=10cm,BC边上的高等于8cm,则BC的长为_____cm.
13、(4分)若一元二次方程有两个不相同的实数根,则实数的取值范围________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:
(1)请问村庄能否听到宣传,并说明理由;
(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?
15、(8分)已知直线的图象经过点和点
(1)求的值;
(2)求关于的方程的解
(3)若、为直线上两点,且,试比较、的大小
16、(8分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是 .
17、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
(1)求的度数.
(2)若,则平行四边形的周长是多少?
18、(10分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
20、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
21、(4分)直线过第_________象限,且随的增大而_________.
22、(4分)某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.
23、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:
(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;
(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;
(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
25、(10分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.
(1)点的坐标为 .
(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;
(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.
26、(12分)化简:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
依题意得: ,解得x>1,
故选C.
2、A
【解析】
试题分析:根据三角形的中位线等于第三边一半的性质,得这个等边三角形的中位线长为2。故选A。
3、B
【解析】
根据分式的值为零的条件可得:|a|﹣1=2且a+1≠2,从而可求得a的值.
【详解】
解:由题意得:|a|﹣1=2且a+1≠2,
解得:a=1.
故选B.
此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为2;(1)分母不为2.这两个条件缺一不可.
4、B
【解析】
找出20个数据的最大值与最小值,求出它们的差,再除以5即得结果.
【详解】
解:根据题意得:(34-10)÷5=4.8.
即组距为5分.
故选B.
本题考查了频数分布表的相关知识,弄清题意,掌握求组距的方法是解题的关键.
5、C
【解析】
试题分析:根据二次根式的意义,x-2≥0,解得x≥2.
故选C.
考点:二次根式的意义.
6、C
【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;
【详解】
解:过点C作CE⊥y轴于点E.
∵∠CEA=∠CAB=∠AOB=90°,
∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,
∴∠EAC=∠ABO,
∵AC=AB,
∴△CEA≌△AOB(AAS),
∴EA=OB=x,CE=OA=1,
∵C的纵坐标为y,OE=OA+AD=1+x,
∴y=x+1.
故选:C.
本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
7、D
【解析】
①∵BE平分∠ABC,
∴∠CBE=∠ABC,
∵∠ABC=2∠C,
∴∠EBC=∠C,
∴BE=CE,
∴AC-BE=AC-CE=AE;(①正确)
②∵BE=CE,
∴点E在线段BC的垂直平分线上;(②正确)
③∵∠BAC=90°,∠ABC=2∠C,
∴∠ABC=60°,∠C=30°,
∵BE=CE,
∴∠EBC=∠C=30°,
∴∠BEA=∠EBC+∠C=60°,
又∵∠BAC=90°,AD⊥BE,
∴∠DAE=∠ABE=30°,
∴∠DAE=∠C;(③正确)
④∠ABE=30°,AD⊥BE,
∴AB=2AD,
∵∠BAC=90°,∠C=30°,
∴BC=2AB,
∴BC=4AD.(④正确)
综上,正确的结论有4个,故选D.
点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.
8、A
【解析】
观察图象可知:甲的波动较小,成绩较稳定.
【详解】
解:从图得到,甲的波动较小,甲的成绩稳定.
故选:A.
本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-2x.
【解析】
利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。
【详解】
将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x
将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,
故答案为y=-2x.
本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。
10、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
11、61.8m或38.2m
【解析】由于C为线段AB=100cm的黄金分割点,
则AC=100×61.8m
或AC=100-.
12、9或1
【解析】
利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况求出BC的长度.
【详解】
解:过点A作AD⊥BC于D,
由勾股定理得,BD==15(cm),
CD==6(cm),
如图1,BC=CD+BD=1(cm),
如图2,BC=BD﹣CD=9(cm),
故答案为:9或1.
本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点在于要分情况讨论.
13、且
【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.
【详解】
解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.
故答案为:m<1且m≠1.
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
三、解答题(本大题共5个小题,共48分)
14、(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传.
【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答
(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响
【详解】
解:(1)村庄能听到宣传.
理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传
(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答
则AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影响村庄的时间为:1200÷300=4(分钟).
∴村庄总共能听到4分钟的宣传.
此题考查解直角三角形,利用勾股定理进行计算是解题关键
15、(1)b=1;(2);(3).
【解析】
(1)将直线经过的两点代入原直线,联立二元一次方程组即可求得b值;
(2)求出k值,解一元一次方程即可;
(3)根据k的大小判断直线是y随x的增大而增大的,由此可知、的大小.
【详解】
解:(1)将(2,4),(-2,-2)代入直线得到:
,
解得:,
∴b=1;
(2)已知,b=1,
令,
解得,
∴关于的方程的解是;
(3)由于>0,可知直线是y随x的增大而增大的,
∵,
∴
相关试卷
这是一份安徽省石台县2024年九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省固镇县2024年数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。