安徽省天长市2024年数学九年级第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式的解集是( )
A.B.C.D.
2、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.16B.19C.22D.25
3、(4分)函数与在同一坐标系中的图象可能是( )
A.B.
C.D.
4、(4分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是( )
A.k>0B.k<0C.k≤0D.k≥0
5、(4分)如果5x=6y,那么下列结论正确的是( )
A.B.C.D.
6、(4分)如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD延长线于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是( )
A.2B.1C.D.
7、(4分)如图,在矩形中,平分,交边于点,若,,则矩形的周长为( )
A.11B.14C.22D.28
8、(4分)已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )
A.y=B.y=-C.y=D.y=-
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是______.
10、(4分)若,则的取值范围为_____.
11、(4分)若点与点关于原点对称,则______.
12、(4分)如图,字母A所代表的正方形面积为____.
13、(4分)一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图,线段、折线分别表示两车离甲地的距离(单位:千米)与时间(单位:小时)之间的函数关系.
(1)线段与折线中,______(填线段或折线)表示货车离甲地的距离与时间之间的函数关系.
(2)求线段的函数关系式(标出自变量取值范围);
(3)货车出发多长时间两车相遇?
15、(8分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
16、(8分)如图,一次函数y= -3x+6的图象与轴、轴分别交于、两点.
(1)将直线向左平移1个单位长度,求平移后直线的函数关系式;
(2)求出平移过程中,直线在第一象限扫过的图形的面积.
17、(10分)关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.
18、(10分)在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:
一次函数与方程(组)的关系:
(1)一次函数的解析式就是一个二元一次方程;
(2)点B的横坐标是方程kx+b=0的解;
(3)点C的坐标(x,y)中x,y的值是方程组①的解.
一次函数与不等式的关系:
(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;
(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.
(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:① ;② ;
(二)如果点B坐标为(2,0),C坐标为(1,3);
①直接写出kx+b≥k1x+b1的解集;
②求直线BC的函数解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图将△ABC沿BC平移得△DCE,连AD,R是DE上的一点,且DR:RE=1:2,BR分别与AC,CD相交于点P,Q,则BP:PQ:QR=__.
20、(4分)直角三角形的两直角边是3和4,则斜边是____________
21、(4分)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.
22、(4分)在一次芭蕾舞比赛中有甲、乙两个团的女演员参加表演,她们的平均身高相同,若S甲2=1.5,S乙2=2.5,则_____(填“甲”或“乙”)表演团的身高更整齐.
23、(4分)定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知x=,y=,求下列各式的值:
(1)x2-xy+y2;
(2).
25、(10分)作图题.
小峰一边哼着歌“我是一条鱼,快乐的游来游去”,一边试着在平面直角坐标系中画出了一条鱼.如图,O(0,0),A(5,4),B(3,0),C(5,1),D(5,-1),E(4,-2).
(1)作“小鱼”关于原点O的对称图形,其中点O,A,B,C,D,E的对应点分别为O1,A1,B1,C1,D1,E1(不要求写作法);
(2)写出点A1,E1的坐标.
26、(12分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)
(1)分别求出本周内甲、乙两种水果每天销售量的平均数;
(2 )哪种水果销售量比较稳定?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:移项得,,两边同时除以2得,.故选C.
考点:解一元一次不等式.
2、C
【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
【详解】
解:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
,
∴△AED≌△CEB′(AAS);
∴EA=EC,
∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3,
=22,
故选:C.
本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
3、D
【解析】
根据k值的正负,判断一次函数和反比例函数必过的象限,二者一致的即为正确答案.
【详解】
在函数与中,
当k>0时,图象都应过一、三象限;
当k<0时,图象都应过二、四象限,
故选:D.
本题考查了一次函数与反比例函数的图象和性质,掌握一次函数和反比例函数的图象和性质是解题的关键.
4、A
【解析】
根据一次函数的性质求解.
【详解】
一次函数的图象经过第一、二、三象限,那么.故选A.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
5、A
【解析】
试题解析:A, 可以得出:
故选A.
6、B
【解析】
证明四边形ABDE是平行四边形,得出AB=DE,证出CE=2AB,求出∠CEF=30°,得出CE=2CF=2,即可得出AB的长.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,∠BCD=∠BAD=120°,
∵AE∥BD,
∴四边形ABDE是平行四边形,
∴AB=DE,
∴CE=2AB,
∵∠BCD=120°,
∴∠ECF=60°,
∵EF⊥BC,
∴∠CEF=30°,
∴CE=2CF=2,
∴AB=1;
故选:B.
本题考查平行四边形的性质与判定、直角三角形的性质;熟练掌握平行四边形的判定与性质是解决问题的关键.
7、C
【解析】
根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;
【详解】
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD;AD∥BC;
∵ED=5,EC=3,
∴DC =DE−CE=25−9,
∴DC=4,AB=4;
∵AD∥BC,
∴∠AEB=∠DAE;
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB=4,
矩形的周长=2(4+3+4)=22.
故选C
此题考查矩形的性质,解题关键在于求出DC=4
8、B
【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0),即可求得k的值.
【详解】
设反比例函数的解析式为y=(k≠0).
∵该函数的图象过点M(−1,2),
∴2=,
得k=−2.
∴反比例函数解析式为y=-.故选B.
本题考查了待定系数法求反比例函数解析式,解题的关键是掌握待定系数法求反比例函数解析式的方法和步骤.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3
【解析】
首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可
【详解】
不等式的解集是x≤3,
故不等式4x-6≥7x-15的正整数解为1,2,3
故答案为:3
此题考查一元一次不等式的整数解,掌握运算法则是解题关键
10、
【解析】
根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
【详解】
∵,
∴1−a≥0,
∴a≤1,
故答案是a≤1.
本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
11、1
【解析】
∵点P(m,﹣2)与点Q(3,n)关于原点对称,
∴m=﹣3,n=2,
则(m+n)2018=(﹣3+2)2018=1,
故答案为1.
12、1
【解析】
根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.
【详解】
解:∵正方形PQED的面积等于225,
∴即PQ2=225,
∵正方形PRGF的面积为289,
∴PR2=289,
又△PQR为直角三角形,根据勾股定理得:
PR2=PQ2+QR2,
∴QR2=PR2-PQ2=289-225=1,
则正方形QMNR的面积为1.
故答案为:1.
此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.
13、3.1
【解析】
根据众数的定义先求出x的值,然后再根据方差的公式进行计算即可得.
【详解】
解:已知一组数据1,x,4,6,7的众数是6,说明x=6,
则平均数=(1+6+4+6+7)÷5=15÷5=5,
则这组数据的方差==3.1,
故答案为3.1.
本题考查了众数、方差等,熟练掌握众数的定义、方差的计算公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)OA;(2)y=110x−195(2.5≤x≤4.5);(3)3.9小时.
【解析】
(1)根据题意可以分别求得两个图象中相应函数对应的速度,从而可以解答本题;
(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
(3)根据题意可以求得OA对应的函数解析式,从而可以解答本题.
【详解】
(1)线段OA表示货车货车离甲地的距离y与时间x之间的函数关系,
理由:vOA=(千米/时),vBCD=
∵60<90轿车的平均速度大于货车的平均速度,
∴线段OA表示货车离甲地的距离y与时间x之间的函数关系.
故答案为:OA;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
∴
解得
∴CD段函数解析式:y=110x−195(2.5≤x≤4.5);
(3)设线段OA对应的函数解析式为y=kx,
300=5k,得k=60,
即线段OA对应的函数解析式为y=60x,
,解得
即货车出发3.9小时两车相遇.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、(1)△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;(2)详见解析
【解析】
(1)因为ABCD是平行四边形,AD∥BC,因此∠ADE=∠CBF,又知DE=BF,D=BC那么构成了三角形ADE和CBF全等的条件(SAS)因此△AED≌△CFB.同理可得出△ABE≌△CDF,△ABD≌△CDB.
(2)要证明四边形AGCH是个平行四边形,已知的条件有AB∥CD,只要证得AG∥CH即可得出上述结论.那么就需要证明∠AEB=∠DFC,也就是证明△ABE≌△CDF,根据AB∥CD.∴∠ABD=∠CDB.这两个三角形中已知的条件就有AB=CD,BE=DF(BE=DF+EF=DE+EF=DF),又由上面得出的对应角相等,那么两三角形就全等了(SAS).
【详解】
(1)解:△ABE≌△CDF;△AED≌△CFB;△ABD≌△CDB;
(2)证明:在△ADE和△CBF中,AD=CB,∠ADE=∠CBF,DE=BF,
∴△ADE≌△CBF,
∴∠AED=∠CFB.
∵∠FEG=∠AED=∠CFB=∠EFH,
∴AG‖HC,而且,AH‖GC,
∴四边形AGCH是平行四边形
本题考查了全等三角形的判定,平行四边形的性质和判定等知识点,本题中公共全等三角形来得出线段和角相等是解题的关键.
16、(1)y= -3x+3;(1).
【解析】
(1)根据平移的性质“左加右减”,将x换成x+1整理后即可得出结论;
(1)根据三角形的面积公式直接求出扫过的面积即可得出结论.
【详解】
(1)根据平移规律可得平移后的直线的解析式为:
y= -3(x+1)+6= -3x-3+6= -3x+3;
(1)对于一次函数y= -3x+6,当x=0时,y=6,所以B(0,6),
令y=0,即-3x+6=0,解得x=1.所以A(1,0)
同理可得直线y= -3x+3与x轴的交点C(1,0),与y轴的交点D(0,3)
因此直线AB在第一象限扫过的图形的面积为:
S=OA×OB-OC×OD=×1×6-×1×3=.
本题考查一次函数图象的几何变换以及三角形的面积公式,解题的关键是熟记平移的性质“上加下减,左加右减”,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
17、(1)m>﹣且m≠﹣;(2)不存在.理由见解析.
【解析】
(1)根据方程有两个不相等的实数根结合根的判别式以及二次项系数不为0,即可得出关
于m的一元一次不等式组,解不等式组即可得出结论;
(2)利用根与系数的关系即可求解.
【详解】
(1)∵方程有2个不相等的实数根,
∴△>0,即16m2﹣4×(2m+1)(2m﹣3)>0,
解得:m>,
又2m+1≠0,
∴m≠,
∴m>且 m≠;
(2)∵x1+x2=、x1x2=,
∴=,
由=﹣1可得=﹣1,
解得:m=,
∵,
∴不存在.
本题考查了根的判别式,解题关键是根据方程解的个数结合二次项系数不为0得出关于m的一元一次不等式组.
18、(一);kx+b<1;(二)①x≤1;②y=-3x+2
【解析】
(一)①因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;
②函数y=kx+b中,当y<1时,kx+b<1,因此x的取值范围是不等式kx+b<1的解集;
(二)①由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值;
②利用待定系数法即可求出直线BC的函数解析式.
【详解】
解:(一)根据题意,可得①;②kx+b<1.
故答案为;kx+b<1;
(二)如果点B坐标为(2,1),C坐标为(1,3);
①kx+b≥k1x+b1的解集是x≤1;
②∵直线BC:y=kx+b过点B(2,1),C(1,3),
∴,解得,
∴直线BC的函数解析式为y=-3x+2.
此题考查了一次函数与二元一次方程组及一元一次不等式之间的联系,一次函数的性质,待定系数法求一次函数解析式,利用数形结合与方程思想是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2:1:1
【解析】
根据平移的性质得到AC∥DE,BC=CE,得到△BPC∽△BRE,根据相似三角形的性质得到PC=DR,根据△PQC∽△RQD,得到PQ=QR,即可求解.
【详解】
由平移的性质可知,AC∥DE,BC=CE,
∴△BPC∽△BRE,
∴,
∴PC=RE,BP=PR,
∵DR:RE=1:2,
∴PC=DR,
∵AC∥DE,
∴△PQC∽△RQD,
∴=1,
∴PQ=QR,
∴BP:PQ:QR=2:1:1,
故答案为2:1:1.
本题考查了相似三角形的判定和性质,平移的性质,掌握相似三角形的判定定理和性质定理是解题的关键.
20、1
【解析】
在直角三角形中,已知两直角边根据勾股定理可以计算斜边.
【详解】
在直角三角形中,三边边长符合勾股定理,
已知两直角边为3、4,则斜边边长==1,
故答案为 1.
本题考查了直角三角形中的运用,本题中正确的运用勾股定理求斜边的长是解题的关键.
21、.
【解析】
解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;
故答案为.
本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.
22、甲
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:由于S2甲<S乙2,
则成绩较稳定的演员是甲.
故答案为甲.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
23、
【解析】
可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解
【详解】
解:
①当为顶角时,等腰三角形两底角的度数为:
∴特征值
②当为底角时,顶角的度数为:
∴特征值
综上所述,特征值为或
故答案为或
本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.
二、解答题(本大题共3个小题,共30分)
24、(1) ;(2) 12.
【解析】
试题分析: 由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.
试题解析:
(1)∵x=,y=,
∴x+y=,xy=,
∴x2-xy+y2=(x+y)2-3xy=7-=;
(2)===12.
25、(1)见解析;(2)A1(-5,-4),E1(-4,2).
【解析】
(1)根据网格结构找出点O、A、B、C、D、E关于原点O的对称点O1、A1、B1、C1、D1、E1的位置,然后顺次连接即可;
(2)根据平面直角坐标系中A1,E1的位置,直接写出点A1,E1的坐标即可.
【详解】
(1)如图所示:
(2)由题意得:A1(-5,-4),E1(-4,2).
本题主要考查中心对称变换,掌握网格结构准确找出点O、A、B、C、D、E关于原点O的对称点的位置是解题的关键.
26、(1),;(2)乙种水果销量比较稳定.
【解析】
(1)根据平均数的公式计算即可.
(2)根据方差公式计算,再根据方差的意义“方差越小越稳定”判断销售量哪家更稳定.
【详解】
(1),
(2)
,
,
,
所以乙种水果销量比较稳定.
本题考查了求平均数和方差,熟练掌握平均数和方差公式是解答本题的关键,
题号
一
二
三
四
五
总分
得分
品种 星期
一
二
三
四
五
六
日
甲
乙
安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省安庆市九一六校2024年九年级数学第一学期开学学业质量监测试题【含答案】: 这是一份安徽省安庆市九一六校2024年九年级数学第一学期开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。