安徽省宿州市埇桥区2024-2025学年九上数学开学学业水平测试模拟试题【含答案】
展开
这是一份安徽省宿州市埇桥区2024-2025学年九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)代数式有意义的取值范围是( )
A.B.C.D.
2、(4分)下列计算正确的是( )
A.B.
C.=1D.
3、(4分)已知空气的单位质量是0.001239g/cm3,用科学记数法表示该数为( )
A.B.C.D.
4、(4分)如图,直线与分别交x轴于点,,则不等式的解集为( )
A.B.C.D.或
5、(4分)若分式的值为零,则x的值是( )
A.±2B.2C.﹣2D.0
6、(4分)若线段,且点C是AB的黄金分割点,则BC等于( )
A.B.C.或D.或
7、(4分)如图,在中,平分交AC于点.若,则的长是( )
A.B.C.D.
8、(4分)在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为,那么袋中总共球的个数为()
A.15 个B.12 个C.8 个D.6 个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为________.
10、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
11、(4分)如图,在中,,,的面积为8,则四边形的面积为______.
12、(4分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
13、(4分) “两直线平行,内错角相等”的逆命题是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
(1)求正比例函数和一次函数的表达式;
(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
(3)求出的面积.
15、(8分)分解因式:
(1);
(2)。
16、(8分)请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
17、(10分) “立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评分标准如下:注:成绩栏里的每个范围,含最低值,不含最高值.
某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:
1.96 2.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32
请完成下列问题:
(1)求这10名男生立定跳远成绩的极差和平均数;
(2)求这10名男生立定跳远得分的中位数和众数;
(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.
18、(10分)如图,已知菱形的对角线相交于点,延长至点,使,连结.
求证:.
当时,四边形为菱形吗?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.
(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.
(2)如图2,若直线l经过点B(1,0), 双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.
20、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
21、(4分)若,则的值为______.
22、(4分)在平行四边形ABCD中,O是对角线AC、BD的交点,AC⊥BC,且AB=10㎝,AD=6㎝,则OB=_______________.
23、(4分)直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC,CD于E、F.
(1)试说明△CEF是等腰三角形.
(2)若点E恰好在线段AB的垂直平分线上,试说明线段AC与线段AB之间的数量关系.
25、(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=3,BC=4,求四边形OCED的周长.
26、(12分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.
故选A.
2、D
【解析】
根据二次根式的加减,二次根式的性质,二次根式的除法逐项计算即可.
【详解】
:A、与不是同类项,不能合并,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选D.
本题考查了二次根式的运算与性质,熟练掌握二次根式的性质与运算法则是解答本题的关键.
3、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.001219=1.219×10-1.
故选:C.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
4、D
【解析】
把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.
【详解】
∵
∴①或②
∵直线与分别交x轴于点,
观察图象可知①的解集为:,②的解集为:
∴不等式的解集为或.
故选D.
本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.
5、C
【解析】
分式的值为1,则分母不为1,分子为1.
【详解】
∵|x|﹣2=1,
∴x=±2,
当x=2时,x﹣2=1,分式无意义.
当x=﹣2时,x﹣2≠1,
∴当x=﹣2时分式的值是1.
故选C.
分式是1的条件中特别需要注意的是分母不能是1,这是经常考查的知识点.
6、D
【解析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB=,
当AC>BC时,BC==,
故选:D.
本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.
7、A
【解析】
根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.
【详解】
∵∠A=∠DBC=36°,∠C公共,
∴△ABC∽△BDC,且AD=BD=BC.
设BD=x,则BC=x,CD=2-x.
由于,
∴.
整理得:x2+2x-4=0,
解方程得:x=-1±,
∵x为正数,
∴x=-1+,
即AD=
故选A.
本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.
8、A
【解析】
根据红球的概率公式列出方程求解即可.
【详解】
解:根据题意设袋中共有球m个,则
所以m=1.
故袋中有1个球.
故选:A.
本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.
【详解】
解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
∴△ABC≌△A1BC1,
∴A1B=AB=6,
∴△A1BA 是等腰三角形,∠A1BA=30°,
∴S△A1BA= ×6×3=1,
又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,
S△A1BC1=S△ABC,
∴S 阴影=S△A1BA=1. 故答案为1.
本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
10、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
11、2
【解析】
根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.
【详解】
解:∵DE∥BC,,
∴△ADE∽△ABC,,
∴=( )2=,
∵△ADE的面积为8,
∴S△ABC=1.
S四边形DBCE=S△ABC-S△ADE=1-8=2,
故答案为:2.
本题考查相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=1是解题关键.
12、1
【解析】
分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=1.
详解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM=3,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=1,
故答案为1.
点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
13、内错角相等,两直线平行
【解析】
解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.
三、解答题(本大题共5个小题,共48分)
14、(1);;(2)图详见解析;(3)3
【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
(2)根据题意描出相应的点,再连线即可;
(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
【详解】
解:(1)把A(1,2)代入中,得,
∴正比例函数的表达式为;
把A(1,2),B(3,0)代入中,得
,
解得:,
所以一次函数的表达式为;
(2)如图所示.
(3)由题意可得:.
本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
15、(1);(2).
【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式即可.
【详解】
解:(1)原式
(2)原式
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.
16、见解析.
【解析】
参考小东同学的做法,可得新正方形的边长为,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.
【详解】
解:所画图形如图所示.
此题主要考查对正方形与三角形之间关系的灵活掌握.
17、(1)0.73,2.25;(2)2,10;(3)1.
【解析】
(1)根据极差、平均数的定义求解;
(2)对照表格得到10名男生立定跳远得分,然后根据中位线、众数的概念解答;
(3)用样本根据总体.
【详解】
解:(1)10名男生“立定跳远”成绩的极差是:2.60-1.87=0.73(米)
10名男生“立定跳远”成绩的平均数是:
(1.26+2.38+2.56+2.04+2.34+2.17+2.60+2.26+1.87+2.32)=2.25(米);
(2)抽查的10名男生的立定跳远得分依次是:
7,10,10,8,10,8,10,2,6,2.
∴10名男生立定跳远得分的中位数是2分,众数是10分;
(3)∵抽查的10名男生中得分2分(含2分)以上有6人,
∴有480×=1;
∴估计该校480名男生中得到优秀的人数是1人.
本题考查了极差,平均数,中位线,众数的概念,极差是一组数据中最大的数与最小的数的差.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同.
18、(1)详见解析;(2)详见解析.
【解析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;
【详解】
证明:四边形是菱形,
∴,,
又∵,
∴,,
∴四边形 是平行四边形,
∴;
解:结论:四边形是菱形.
理由:∵四边形是菱形,
∴,∵,
∴,是等边三角形,
∴,
∵四边形是平行四边形,
∴四边形是菱形.
考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、F(4,0)
【解析】
(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;
【详解】
解:(1)如图:
当y=0时,±,
解得:x1=2,x2=-2(舍去),
∴点A的坐标为(2,0).
∵点B的坐标为(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F点的坐标为(4,0).
故答案为:(4,0).
(2)设点P的坐标为(x,),则点H的坐标为(1,).
∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
∴点Q的坐标为(x+,).
∵点H的坐标为(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化简得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴点P的坐标为(,).
故答案为:(,).
本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;
20、③
【解析】
分析: 根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.
详解:∵BD=CD,DE=DF,
∴四边形BECF是平行四边形,
①BE⊥EC时,四边形BECF是矩形,不一定是菱形;
②AB=AC时,∵D是BC的中点,
∴AF是BC的中垂线,
∴BE=CE,
∴平行四边形BECF是菱形.
③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;
故答案是:②.
点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:
①定义;②四边相等;③对角线互相垂直平分.
21、.
【解析】
由可得,化简即可得到,再计算,即可求得=.
【详解】
∵,
∴,
∴,
∴,
∴=.
故答案为:.
本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.
22、4cm
【解析】
在▱ABCD中
∵BC=AD=6cm,AO=CO,
∵AC⊥BC,
∴∠ACB=90°,
∴AC==8cm,
∴AO=AC=4cm;
故答案为4cm.
23、2.1.
【解析】
已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据直角三角形斜边上的中线等于斜边的一半即可解题.
【详解】
已知直角三角形的两直角边为3、4,则斜边长为1,
故斜边上的中线长为:1=2.1.
故应填:2.1.
本题考查了勾股定理和直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握基础知识即可解答.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)见解析
【解析】
(1)首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠B+∠BAC=90°,∠CAD+∠ACD=90°,再根据同角的补角相等可得到∠ACD=∠B,再利用三角形的外角与内角的关系可得到∠CFE=∠CEF,最后利用等角对等边即可得出答案;
(2)线段垂直平分线的性质得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B,由于AE是∠BAC的平分线,得到∠CAE=∠EAB,根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵∠ACB=90°,
∴∠B+∠BAC=90°,
∵CD⊥AB,
∴∠CAD+∠ACD=90°,
∴∠ACD=∠B,
∵AE是∠BAC的平分线,
∴∠CAE=∠EAB,
∵∠EAB+∠B=∠CEA,∠CAE+∠ACD=∠CFE,
∴∠CFE=∠CEF,
∴CF=CE,
∴△CEF是等腰三角形;
(2)∵点E恰好在线段AB的垂直平分线上,
∴AE=BE,
∴∠EAB=∠B,
∵AE是∠BAC的平分线,
∴∠CAE=∠EAB,
∴∠CAB=2∠B,
∵∠ACB=90°,
∴∠CAB+∠B=90°,
∴∠B=30°,
∴AC=AB.
此题主要考查了等腰三角形的判定和性质,线段垂直平分线的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.
25、(1)菱形(2)1
【解析】
(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形;(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.
【详解】
(1)四边形OCED是菱形.
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
在矩形ABCD中,OC=OD,
∴四边形OCED是菱形.
(2)∵四边形ABCD是矩形,
∴AC===5,
∴CO=OD=,
∴四边形OCED的周长=4×=1.
此题考查了菱形的判定与性质以及矩形的性质.根据连线的判定定理证得四边形CODE是菱形是解此题的关键.
26、甲种水稻出苗更整齐
【解析】
根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
【详解】
解:(厘米),
(厘米),
(厘米),
(厘米),
∵,
∴甲种水稻出苗更整齐.
本题考查平均数、方差的计算及意义,需熟记计算公式.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(米)
…
1.80~1.86
1.86~1.94
1.94~2.02
2.02~2.18
2.18~2.34
2.34~
得分(分)
…
5
6
7
8
9
10
编号
1
2
3
4
5
甲
12
13
14
15
16
乙
13
14
16
12
10
相关试卷
这是一份2025届安徽省宿州埇桥区七校联考数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省宿州市鹏程中学九上数学开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年安徽宿州埇桥区九上数学开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。