安徽省宣城市名校2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】
展开
这是一份安徽省宣城市名校2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程的求根公式是( )
A.B.
C.D.
2、(4分)如图,点在双曲线上,点在双曲线,轴,分别过点、向轴作垂线,垂足分别为、.若矩形的面积是,则的值为( )
A.B.C.D.
3、(4分)如图,已知AB∥CD,OA:OD=1:4,点M、N分别是OC、OD的中点,则ΔABO与四边形CDNM的面积比为( ).
A.1:4B.1:8C.1:12D.1:16
4、(4分)函数y=中,自变量x的取值范围在数轴上表示正确的是( )
A.B.C.D.
5、(4分)如图,在中,,,,为边上一动点,于点,于点,则的最小值为( )
A.2.4B.3C.4.8D.5
6、(4分)在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是( )
A.B.C.D.
7、(4分)下列等式成立的是( )
A. •=B.=2C.﹣=D.=﹣3
8、(4分)测试5位学生“一分钟跳绳”成绩,得到5个各不相同的数据.在统计时,出现了一处错误:将最高成绩120个写成了180个。以下统计量不受影响的是( )
A.方差B.标准差C.平均数D.中位数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.
10、(4分)分式的值为0,那么的值为_____.
11、(4分)若,则________.
12、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
13、(4分)分式方程有增根,则m=_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,BD是▱ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.
15、(8分)已知:如图,在菱形ABCD 中,点E,O,F分别是边AB,AC,AD的中点,连接CE、CF、OE、OF.
(1)求证:△BCE≌△DCF;
(2)当AB与BC满足什么条件时,四边形AEOF正方形?请说明理由.
16、(8分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
(1)判断四边形的形状,并说明理由,
(2)若,求的长,
17、(10分)甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同.已知乙每分钟比甲多打20个字,求甲每分钟打多少个字
18、(10分)学校准备假期组织学生去北京研学,现有甲、乙两家旅行社表示对学生研学团队优惠.设参加研学的学生有x人,甲、乙两家旅行社实际收费分别为元,元,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:
(1)根据图象直接写出当参加研学的学生人数为多少时,两家旅行社收费相同?
(2)当参加老师的人数为多少人时,选择甲旅行社合算?
(3)如果共有50人参加时,通过计算说明选择哪家旅行社合算?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为_____________cm.
20、(4分)直线 y=2x+3 与 x 轴相交于点 A,则点 A 的坐标为_____.
21、(4分)直线与轴的交点坐标为__.
22、(4分)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=1.点A2,B2,C2分别是边B1C1,A1C1,A1B1的中点;点A3,B3,C3分别是边B2C2,A2C2,A2B2的中点;…;以此类推,则第2019个三角形的周长是_____.
23、(4分)已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,AM是△ABC的中线,D是线段AM的中点,AM=AC,AE∥BC.求证:四边形EBCA是等腰梯形.
25、(10分)随着“一带一路”的不断建设与深化,我国不少知名企业都积极拓展海外市场,参与投资经营.某著名手机公司在某国经销某种型号的手机,受该国政府经济政策与国民购买力双重影响,手机价格不断下降.分公司在该国某城市的一家手机销售门店,今年5月份的手机售价比去年同期每台降价1000元,若卖出同样多的手机,去年销售额可达10万元,今年销售额只有8万元.
(1)今年5月份每台手机售价多少元?
(2)为增加收入,分公司决定拓展产品线,增加经销某种新型笔记本电脑.已知手机每台成本为3500元,笔记本电脑每台成本为3000元,分公司预计用不少于4.8万元的成本资金少量试生产这两种产品共15台,但因资金所限不能超过5万元,共有几种生产方案?
(3)如果笔记本电脑每台售价3800元,现为打开笔记本电脑的销路,公司决定每售出1台笔记本电脑,就返还顾客现金a元,要使(2)中各方案获利最大,a的值应为多少?最大利润多少?
26、(12分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.
请根据统计图提供的信息,解答下列问题
(1)小丽共调查了 名居民的年龄,扇形统计图中a= %,b= %;
(2)补全条形统计图;
(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据一元二次方程的求根公式,即可做出判断.
【详解】
解:一元二次方程的求根公式是,故选A.
本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.
2、A
【解析】
首先得出矩形EODA的面积为:4,利用矩形ABCD的面积是8,则矩形EOCB的面积为:4+8=1,再利用xy=k求出即可.
【详解】
过点A作AE⊥y轴于点E,
∵点A在双曲线上,
∴矩形EODA的面积为:4,
∵矩形ABCD的面积是8,
∴矩形EOCB的面积为:4+8=1,
则k的值为:xy=k=1.
故选A.
此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键.
3、C
【解析】
∵AB∥CD,OA:OD=1:4,∴ΔABO与ΔDCO的面积比为1:16
又∵点M、N分别是OC、OD的中点,∴ΔOMN与四边形CDNM的面积比为1:3
∴ΔABO与四边形CDNM的面积比为1:12
4、B
【解析】
根据函数y=可得出x-1≥0,再解出一元一次不等式即可.
【详解】
由题意得,x-1≥0,
解得x≥1.
在数轴上表示如下:
故选B.
本题要考查的是一元一次不等式的解法以及二次根式成立得出判定,熟练掌握一元一次不等式的解法是本题的解题关键.
5、C
【解析】
根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.
【详解】
如图,连接BD.
∵在△ABC中,AB=8,BC=6,AC=10,
∴AB2+BC2=AC2,即∠ABC=90°.
又∵DE⊥AB于点E,DF⊥BC于点F,
∴四边形EDFB是矩形,
∴EF=BD.
∵BD的最小值即为直角三角形ABC斜边上的高,即4.8,
∴EF的最小值为4.8,
故选C.
此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.
6、B
【解析】
根据中心对称图形的概念解答即可.
【详解】
选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.
故选B.
本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.
7、B
【解析】
利用二次根式的乘法法则对、进行判断;利用二次根式的加减法对进行判断;利用二次根式的性质对进行判断.
【详解】
解:、原式,所以选项错误;
、原式,所以选项正确;
、原式,所以选项错误;
、原式,所以选项错误.
故选:.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
8、D
【解析】
根据方差,平均数,标准差和中位数的定义和计算方法可得答案.
【详解】
解: 在方差和标准差的计算过程中都需要用到数据的平均数,C选项又是平均数,也就是说四个选项有三个跟平均数有关,而平均数的大小和每个数据都有关系,一旦某个数据改变了,平均数肯定会随之改变,而中位数是整组数据从小到大排列后取其中间的数(偶数个数据时取最中间2数的平均数)作为中位数,该事件中虽然最大数120变为180.但并不影响中间数的大小和位置,所以综上所述,不受影响的应该是中位数.
故选:D.
本题主要考查方差、标准差、中位数和平均数,解题的关键是掌握各统计量的定义和计算方法.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a>1且a≠3
【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.
【详解】
解:去分母得:3x﹣a=x﹣1,
解得:x= ,
由分式方程的解为正数,得到>0,≠1,
解得:a>1且a≠3,
故答案为:a>1且a≠3
本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.
10、-1
【解析】
根据分式值为0得出分子等于0求出x的值,再根据分母不等于0排除x=1,即可得出答案.
【详解】
∵分式的值为0
∴
解得:x=1或x=-1
又x-1≠0
∴x=-1
故答案为-1.
本题考查的是分式的值为0,属于基础题型,注意分式值为0则分子等于0,但分母不等于0.
11、
【解析】
由,得到a=b,代入所求的代数式,即可解决问题.
【详解】
∵,
∴a=b,
∴,
故答案为:.
该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.
12、
【解析】
延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
【详解】
延长AB至M,使BM=AE,连接FM,
∵四边形ABCD是菱形,∠ADC=120°
∴AB=AD,∠A=60°,
∵BM=AE,
∴AD=ME,
∵△DEF为等边三角形,
∴∠DAE=∠DFE=60°,DE=EF=FD,
∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
∴∠MEF=∠ADE,
∴△DAE≌EMF(SAS),
∴AE=MF,∠M=∠A=60°,
又∵BM=AE,
∴△BMF是等边三角形,
∴BF=AE,
∵AE=t,CF=2t,
∴BC=CF+BF=2t+t=3t,
∵BC=4,
∴3t=4,
∴t=
考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
13、1
【解析】
分式方程去分母得:x+x﹣1=m, 根据分式方程有增根得到x﹣1=0,即x=1,
将x=1代入整式方程得:1+1﹣1=m,
则m=1,
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
根据平行四边形的性质可得到AB=CD,AB∥CD,从而可得到∠ABE=∠CDF,根据AAS即可判定△AEB≌△CFD,由全等三角形的性质可得到AE=CF,再根据有一组对边平行且相等的四边形是平行四边形即可证出结论.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABE=∠CDF,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,AE∥CF,
在△AEB和△CFD中,
,
∴△AEB≌△CFD(AAS),
∴AE=CF,
∵AE∥CF,
∴四边形AECF是平行四边形.
本题考查了平行四边形的判定.熟练掌握平行四边形的判定方法是解题的关键.
15、(1)证明见解析;(2)AB⊥BC时,四边形AEOF正方形.
【解析】
(1)根据中点的定义及菱形的性质可得BE=DF,∠B=∠D,BC=CD,利用SAS即可证明△BCE≌△DCF;
(2)由中点的定义可得OE为△ABC的中位线,根据三角形中位线的性质可得OE//BC,根据正方形的性质可得∠AEO=90°,根据平行线的性质可得∠ABC=∠AEO=90°,即可得AB⊥BC,可得答案.
【详解】
(1)∵四边形ABCD是菱形,点E,O,F分别是边AB,AC,AD的中点,
∴AB=BC=CD=AD,∠B=∠D,
∵点E、F分别是边AB、AD的中点,
∴BE=AB,DF=AD,
∴BE=DF,
在△BCE和△DCF中,,
∴△BCE≌△DCF.
(2)AB⊥BC,理由如下:
∵四边形AEOF是正方形,
∴∠AEO=90°,
∵点E、O分别是边AB、AC的中点,
∴OE为△ABC的中位线,
∴OE//BC,
∴∠B=∠AEO=90°,
∴AB⊥BC.
本题考查菱形的性质、全等三角形的判定及正方形的性质,菱形的四条边都相等,对角相等;正方形的四个角都是直角;熟练掌握菱形和正方形的性质是解题关键.
16、(1)四边形为菱形,见解析;(2)
【解析】
(1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
(2)根据折叠特性设未知边,构造勾股定理列方程求解.
【详解】
解: 四边形为菱形;
理由如下:
四边形为矩形,
四边形为平行四边形
由折叠的性质,则
四边形为菱形,
,
.
由得
设.
在,
解得:,
,
.
此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
17、60
【解析】
设甲每分钟打x个字,根据“甲打1800字的时间与乙打2400字的时间相同”列出方程,解方程即可求解.
【详解】
解:设甲每分钟打x个字.
根据题意,得 .
解得 .
经检验, 是原方程的解,且符合题意.
答:甲打字的速度是每分钟60个字。
本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
18、(1)30人;(2)当有30人以下时,y
相关试卷
这是一份安徽省宣城市宣州区水阳中学2024年九年级数学第一学期开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省宣城市奋飞学校2024年九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省宣城市第二中学2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,四象限D.当时,随的增大而减小,解答题等内容,欢迎下载使用。