白银市重点中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )
A.6B.6C.3D.3+3
2、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为,,,,则射击成续最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)在矩形ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,CE=2,则矩形ABCD的周长( )
A.10B.15C.20D.22
4、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
A.AB∥CD,AD=BCB.AB=CD,AB∥CD
C.AB=CD,AD=BCD.AC与BD互相平分
5、(4分)如图是某公司今年1~5月份的收入统计表(有污染,若2月份,3月份的增长率相同,设它们的增长率为x,根据表中信息,可列方程为( )
A.(1+x)2=4﹣1B.(1+x)2=4
C.(1+2x)2=7D.(1+x)(1+2x)=4
6、(4分)下列等式一定成立的是( )
A.-=B.∣2-=2-C.D.-=-4
7、(4分)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
A.B.C.50D.25
8、(4分)已知y关于x成正比例,且当时,,则当时,y的值为
A.3B.C.12D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
10、(4分)如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.
11、(4分)等式成立的条件是_____.
12、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
13、(4分)将直线向上平移2个单位得到直线_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,AE∥BF,AC平分∠BAE,交BF于点C.
(1)求证:AB=BC;
(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)
15、(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
16、(8分)选择合适的点,在如图所示的坐标系中描点画出函数的图象,并指出当为何值时,的值大于1.
17、(10分)如图所示,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.
(1)求证B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给出证明.
18、(10分)如图,已知△ABC中,三个顶点的坐标是:A(-3,6)、B(-5,3)、C(-2,1).
(1)画出△ABC向右平移五个单位得到的,并写出的坐标;
(2)画出△ABC关于轴对称的,并写出的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
20、(4分)如图所示,数轴上点A所表示的数为a,则a的值是____.
21、(4分)一次函数的图象经过第二、三、四象限,则的取值范围是__________.
22、(4分)关于的x方程=1的解是正数,则m的取值范围是_____.
23、(4分)在△ABC中,∠C=90°,若b=7,c=9,则a=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:.
25、(10分)如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.
(1)求证:AO=CM;
(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.
26、(12分)上午6:00时,甲船从M港出发,以80和速度向东航行。半小时后,乙船也由M港出发,以相同的速度向南航行。上午8:00时,甲、乙两船相距多远?要求画出符合题意的图形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.
连接BC′, ∵旋转角∠BAB′=45°,∠BAD′=45°, ∴B在对角线AC′上, ∵B′C′=AB′=3,
在Rt△AB′C′中,AC′==3, ∴B′C=3﹣3,
在等腰Rt△OBC′中,OB=BC′=3﹣3, 在直角三角形OBC′中,OC=(3﹣3)=6﹣3,
∴OD′=3﹣OC′=3﹣3,
∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6
考点:(1)旋转的性质;(2)正方形的性质;(3)等腰直角三角形的性质
2、D
【解析】
方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.
【详解】
解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,
∴丁的方差最小,成绩最稳定,
故选:D.
本题考查方差的意义,记住方差越小数据越稳定.
3、C
【解析】
由矩形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD、CD的长.进而解答即可.
【详解】
∵四边形ABCD是矩形,
∴OA=OC,AD∥BC,
∵OE∥BC,
∴OE∥AD,
∴OE是△ACD的中位线,
∵OE=3cm,
∴AD=2OE=2×3=6(cm).
∵CE=2,
∴CD=4,
∴矩形ABCD的周长=20,
故选:C.
此题考查了矩形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.
4、A
【解析】
根据平行四边形的判定方法依次判定各项后即可解答.
【详解】
选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
故选A.
本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
5、B
【解析】
设2月份,3月份的增长率为x,根据等量关系:1月份的收入×(1+增长率)2=1,把相关数值代入计算即可.
【详解】
解:设2月份,3月份的增长率为x,依题意有
1×(1+x)2=1,
即(1+x)2=1.
故选:B.
主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
6、D
【解析】
分析:根据二次根式的运算一一判断即可.
详解:A. 故错误.
B.故错误.
C.,故错误.
D.正确.
故选D.
点睛:考查二次根式的运算,根据运算法则进行运算即可.
7、D
【解析】
根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.
【详解】
根据题意,∠1=∠2=30°,
∵∠ACD=60°,
∴∠ACB=30°+60°=90°,
∴∠CBA=75°﹣30°=45°,
∴∠A=45°,
∴AB=AC.
∵BC=50×0.5=25,
∴AC=BC=25(海里).
故选D.
考点:1等腰直角三角形;2方位角.
8、B
【解析】
先利用待定系数法求出,然后计算对应的函数值.
【详解】
设,
当时,,
,解得,
,
当时,.
故选B.
本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为,然后把一个已知点的坐标代入求出k即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
10、
【解析】
设直线与x轴交于点C,由直线BC的解析式可得出 结合可得出,通过解含30度角的直角三角形即可得出b值.
【详解】
设直线与x轴交于点C,如图所示:
∵直线BC的解析式为y=x+b,
∴
∵
∴
当x=0时,y=x+b=b.
在Rt△ABO中, OB=b,OA=5,
∴AB=2b,
∴
∴
故答案为:
考查待定系数法求一次函数解析式, 三角形的外角性质, 含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.
11、﹣1≤a<3
【解析】
根据负数没有算术平方根列出不等式组,求出解集即可.
【详解】
依题意,得:,解得:﹣1≤a<3
此题考查二次根式的乘除法,解题关键在于掌握运算法则
12、乙.
【解析】
根据方差反应了数据的波动情况,即可完成作答。
【详解】
解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。
本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。
13、
【解析】
利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.
【详解】
解:直线y=x-1向上平移2个单位,
得到直线的解析式为y=x-1+2=x+1.
故答案为:
本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)画图见解析.
【解析】
(1)根据平行线的性质和角平分线的定义即可得到结论;
(2)在射线AE上截取AD=AB,根据菱形的判定定理即可得到结论.
【详解】
解:(1)∵AE∥BF,
∴∠EAC=∠ACB,
又∵AC平分∠BAE,
∴∠BAC=∠EAC,
∴∠BAC=∠ACB,
∴BA=BC.
(2)主要作法如下:
本题考查了作图-复杂作图,菱形的判定,正确的作出图形是解题的关键.
15、(1)y=-x+6;(2)12;(3)或.
【解析】
(1)利用待定系数法,即可求得函数的解析式;
(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;
(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.
【详解】
(1)设直线AB的函数解析式是y=kx+b,
根据题意得:,解得:,
∴直线AB的解析式是:y=-x+6;
(2)在y=-x+6中,令x=0,解得:y=6,
∴;
(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,
解得:,即直线OA的解析式是:,
∵△ONC的面积是△OAC面积的,
∴点N的横坐标是,
当点N在OA上时,x=1,y=,即N的坐标为(1,),
当点N在AC上时,x=1,y=5,即N的坐标为(1,5),
综上所述,或.
本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.
16、图象见详解;时,.
【解析】
任意选取两个的值,代入后求得对应值,在网格上对应标出,连接,可得所需直线,根据已画图象可得时,的取值范围.
【详解】
在函数中,
当时,,
当时,,
描点,画图如下:
由图可知, 时,.
本题考查了一次函数图象的画法,及根据图象求符合条件的的取值范围的问题,熟练掌握相关技巧是解题的关键.
17、(1)证明见解析;
(1)a,b,c三者存在的关系是a+b>c,理由见解析.
【解析】
(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;
(1)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.
证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,
在矩形ABCD中,AD∥BC,
∴∠B′EF=∠BFE,
∴∠B′FE=∠B'EF,
∴B′F=BE,
∴B′E=BF;
解:(1)答:a,b,c三者关系不唯一,有两种可能情况:
(ⅰ)a,b,c三者存在的关系是a1+b1=c1.
证明:连接BE,则BE=B′E,
由(1)知B′E=BF=c,
∴BE=c.
在△ABE中,∠A=90°,
∴AE1+AB1=BE1,
∵AE=a,AB=b,
∴a1+b1=c1;
(ⅱ)a,b,c三者存在的关系是a+b>c.
证明:连接BE,则BE=B′E.
由(1)知B′E=BF=c,
∴BE=c,
在△ABE中,AE+AB>BE,
∴a+b>c.
“点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(1)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.
18、(1)作图见解析,;(2)作图见解析,
【解析】
(1)分别将A、B、C三个点向右平移五个单位得到对应点,顺次连接即可得,再写出坐标即可;
(2)分别作出A、B、C三个点关于x轴的对称点,顺次连接即可得,再写出坐标即可.
【详解】
(1)如图所示,即为所求,;
(2)如图所示,即为所求,.
本题考查坐标系中的平移与轴对称作图,熟练掌握坐标系中点的平移与对称规律是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、18
【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
【详解】
∵CE平分∠BCD交AD边于点E,
∴.∠ECD=∠ECB
∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
∴∠DEC=∠ECB,
∴∠DEC=∠DCE
∴DE=DC
∵AD=2AB
∴AD=2CD
∴AE=DE=AB=3
∴AD=6
∴四边形ABCD的周长为:2×(3+6)=18.
故答案为:18.
此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
20、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
21、m<3
【解析】
根据一次函数y=(m-3)x-2的图象经过二、三、四象限判断出m的取值范围即可.
【详解】
∵一次函数y=(m-3)x-2的图象经过二、三、四象限,
∴m-3<0,
∴m<3,
故答案为:m<3.
此题考查一次函数的图象与系数的关系,解题关键在于掌握一次函数y=kx+b(k≠0)中,当k<0,b<0时函数的图象在二、三、四象限.
22、m>﹣5且m≠0
【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.
【详解】
去分母,得m=x-5,
即x=m+5,
∵方程的解是正数,
∴m+5>0,即m>-5,
又因为x-5≠0,
∴m≠0,
则m的取值范围是m>﹣5且m≠0,
故答案为:m>﹣5且m≠0.
本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.
23、4
【解析】
利用勾股定理:a2+b2=c2,直接解答即可
【详解】
∵∠C=90°
∴a2+b2=c2
∵b=7,c=9,
∴a===4
故答案为4
本题考查了勾股定理,对应值代入是解决问题的关键
二、解答题(本大题共3个小题,共30分)
24、3.
【解析】
根据二次根式的性质化简计算可得.
【详解】
解:原式.
本题主要考查二次根式的加减,解题的关键是掌握二次根式的性质.
25、(1)见解析 (2)直角三角形,证明见解析
【解析】
(1)根据“BO绕点B顺时针旋转60°到BM”可知∠OBM=60°,OB=OM,即可证明△AOB≌△CMB,从而得到答案;
(2)由(1)可知AO=CM,根据OB=BM,∠OBM=60°,可知△OBM为等边三角形,从而得到OB=OM,根据勾股定理的逆定理即可得到答案.
【详解】
(1)证明:∵BO绕点B顺时针旋转60°到BM
∴∠OBM=60°,OB=BM,
∵△ABC为等边三角形
∴∠ABC=60°,AB=CB
∴∠ABO+∠OBC=∠CBM+∠OBC=60°
∴∠ABO=∠CBM,
在△AOB和△CMB中,
∴△AOB≌△CMB(SAS),
∴AO=CM.
(2)△OMC是直角三角形;理由如下:
∵BO绕点B顺时针旋转60°到BM
∴∠OBM=60°,OB=BM,
∴△OBM为等边三角形
∴OB=OM=10
由(1)可知OA=CM=8
在△OMC中,OM2=100,OC2+CM2=62+82=100,
∴OM2=OC2+CM2,
∴△OMC是直角三角形.
本题考查的是旋转的性质、等边三角形的性质与判定,全等三角形的判定和勾股定理的逆定理,能够利用全等三角形的性质与判定得出对应边和用勾股定理逆定理判定三角形的形状是解题的关键.
26、两船相距200,画图见解析.
【解析】
根据题意画出图形,利用勾股定理求解即可.
【详解】
解:如图所示,
∵甲船从港口出发,以80的速度向东行驶,
∴MA=80×2=160(km),
∵半个小时后,乙船也由同一港口出发,以相同的速度向南航行,
∴MB=80×1.5=120(km),
∴(km),
∴上午8:00时,甲、乙两船相距200km.
本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
月份
1
2
3
4
5
收入/万元
1
▄
4
5
▄
2025届肇庆市重点中学九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2025届肇庆市重点中学九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届唐山市重点中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届唐山市重点中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届黔东南市重点中学数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份2025届黔东南市重点中学数学九年级第一学期开学学业质量监测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。