安徽宿州市第十一中学2025届数学九年级第一学期开学经典模拟试题【含答案】
展开这是一份安徽宿州市第十一中学2025届数学九年级第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一组数:3,5,4,2,3的中位数是( )
A.2B.3C.3.5D.4
2、(4分)下列图象中,不能表示是的函数的是( )
A.B.C.D.
3、(4分)某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进达到学校.小明走路的速度v(米/分钟)是时间t(分钟)的函数,能正确反映这一函数关系的大致图像是( )
A.B.
C.D.
4、(4分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有( )
A.2个B.3个C.4个D.5个
5、(4分)某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的( )
A.确定调查范围B.汇总调查数据
C.实施调查D.明确调查问题
6、(4分)把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x)B.ax2(x﹣2)
C.ax(x+1)(x﹣1)D.ax(x﹣1)2
7、(4分)下列命题为真命题的是( )
A.若ab>0,则a>0,b>0
B.两个锐角分别相等的两个直角三角形全等
C.在一个角的内部,到角的两边距离相等的点在这个角的平分线上
D.一组对边平行,另一组对边相等的四边形是平行四边形
8、(4分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )
A.90°B.60°C.120°D.45°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.
10、(4分)已知一次函数和函数,当时,x的取值范围是______________.
11、(4分)如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.
12、(4分)如图,在平面直角坐标系xOy中,点A1,A2,A3,…分别在x轴上,点B1,B2,B3,…分别在直线y=x上,△OA1B1,△B1A1A2,△B1B2A2,△B2A2A3,△B2B3A3…,都是等腰直角三角形,如果OA1=1,则点A2019的坐标为_____.
13、(4分)若关于x的方程的解是负数,则a的取值范围是_____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图1摆放时,都可以用“面积法”来证明,请你利用图1或图1证明勾股定理(其中∠DAB=90°)
求证:a1+b1=c1.
15、(8分)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.
根据以上信息,解答下列问题:
(1)请补全频数分布直方图;
(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?
(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?
16、(8分)已知:如图,在中,,,为外角的平分线,.
(1)求证:四边形为矩形;
(2)当与满足什么数量关系时,四边形是正方形?并给予证明
17、(10分)一次函数的图象经过和两点.
(1)求一次函数的解析式.
(2)当时,求的值.
18、(10分)关于x的方程:-=1.
(1)当a=3时,求这个方程的解;
(2)若这个方程有增根,求a的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在正方形ABCD的外侧,作等边△ADE,则∠EBD=________ .
20、(4分)若y与x的函数关系式为y=2x-2,当x=2时,y的值为_______.
21、(4分)如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为__________.
22、(4分)若方程的解是正数,则m的取值范围_____.
23、(4分)不等式9﹣3x>0的非负整数解的和是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知反比例函数y1=的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2)
(1)求出反比例函数和一次函数的关系式;
(2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;
(3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.
25、(10分)一条笔直的公路上有甲乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地.设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象.
(1)李越骑车的速度为______米/分钟;
(2)B点的坐标为______;
(3)李越从乙地骑往甲地时,s与t之间的函数表达式为______;
(4)王明和李越二人______先到达乙地,先到______分钟.
26、(12分)四川汶川大地震牵动了三百多万滨州人民的心,全市广大中学生纷纷伸出了援助之手,为抗震救灾踊跃捐款。滨州市振兴中学某班的学生对本校学生自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据。下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
按大小顺序排列这组数据,最中间那个数是中位数.
【详解】
解:从小到大排列此数据为:2,1,1,4,5,位置处于最中间的数是1,
所以这组数据的中位数是1.
故选:B.
此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
2、D
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.
【详解】
A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不符合题意;
B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不符合题意;
C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不符合题意;
D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D符合题意;
故选:D.
考查了函数的定义,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
3、A
【解析】
首先判断出函数的横、纵坐标所表示的意义,然后再根据题意进行解答.
【详解】
纵坐标表示的是速度、横坐标表示的是时间;
由题意知:小明的走路去学校应分为三个阶段:
①匀速前进的一段时间,此时的函数是平行于横坐标的一条线段,可排除C、D选项;
②加速前进的一段时间,此时的函数是一段斜率大于0的一次函数;
③最后匀速前进到达学校,此时的函数是平行于横坐标的一条线段,可排除B选项;
故选A.
本题应首先看清横轴和纵轴表示的量,然后根据实际情况采用排除法求解.
4、C
【解析】
由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.
【详解】
解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';
∵E为AB的中点,
∴AE=BE=EB',
∴∠EAB'=∠EB'A,
∵∠BEB'=∠EAB'+∠EB'A,
∴2∠FEB=2∠EAB=2∠EB'A,
∴∠FEB=∠EAB=∠EB'A,
∵AB∥CD,
∴∠B'AE=∠ACD,
∴∠FEB=∠ACD,
∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,
∴故选C.
此题考查翻折的性质,EA=EB'是正确解答此题的关键
5、C
【解析】
根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.
【详解】
解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,
故选:C.
本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.
6、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
7、C
【解析】
利用不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定分别判断后即可确定正确的选项.
【详解】
A、若ab>0,则a、b同号,错误,是假命题;
B、两个锐角分别相等的两个直角三角形不一定全等,错误,是假命题;
C、在一个角的内部,到角的两边距离相等的点在这个角的平分线上,正确,是真命题;
D、一组对边平行,另一组对边相等的四边形可以是等腰梯形,错误,是假命题;
故选:C.
考查了命题与定理的知识,解题的关键是了解不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定等知识,难度不大.
8、D
【解析】
首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.
【详解】
解:∵平行四边形中两个内角的度数之比为1:3,
∴设平行四边形中两个内角分别为x°,3x°,
∴x+3x=180,
解得:x=45,
∴其中较小的内角是45°.
故选D.
本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≥2
【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.
【详解】
解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.
本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.
10、
作出函数图象,联立方程组,解出方程组,结合函数图象即可解决问题.
【详解】
根据题意画出函数图象得,
联立方程组和
解得,,,
结合图象可得,当时,
11、10.
【解析】
根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.
【详解】
∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1
∴AC=AC1,∠CAC1=60°,
∵AB=8,AC=6,∠BAC=30°,
∴∠BAC1=90°,AB=8,AC1=6,
∴在RtΔBAC1中,BC1的长=,
故答案为:10.
本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.
12、(22018,0)
【解析】
根据OA1=1,△OA1B1是等腰直角三角形,得到A1和B1的横坐标为1,根据点A1在直线y=x上,得到点B1的纵坐标,结合△B1A1A2为等腰直角三角形,得到A2和B2的横坐标为1+1=2,同理:A3和B3的横坐标为2+2=4=22,A4和B4的横坐标为4+4=8=23,…依此类推,即可得到点A2019的横坐标,即可得到答案.
【详解】
根据题意得:
A1和B1的横坐标为1,
把x=1代入y=x得:y=1
B1的纵坐标为1,
即A1B1=1,
∵△B1A1A2为等腰直角三角形,
∴A1A2=1,
A2和B2的横坐标为1+1=2,
同理:A3和B3的横坐标为2+2=4=22,
A4和B4的横坐标为4+4=8=23,
…
依此类推,
A2019的横坐标为22018,纵坐标为0,
即点A2019的坐标为(22018,0),
故答案为:(22018,0).
此题考查了一次函数的性质,等腰直角三角形的性质;此题是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用等腰直角三角形的性质是解本题的关键.
13、
【解析】
:把a看作常数,根据分式方程的解法求出x的表达式,再根据方程的解是负数列不等式组并求解即可:
【详解】
解:∵
∴
∵关于x的方程的解是负数
∴
∴
解得
本题考查了分式方程的解与解不等式,把a看作常数求出x的表达式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
图1,根据三个直角三角形的面积和等于梯形的面积列式化简即可得证;
图1,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,表示出S四边形ADCB=S△ACD+S△ABC,S四边形ADCB=S△ADB+S△DCB,两者相等,整理即可得证.
【详解】
利用图1进行证明:
证明:∵∠DAB=90°,点C,A,E在一条直线上,BC∥DE,则CE=a+b,
∵S四边形BCED=S△ABC+S△ABD+S△AED=ab+c1+ab,
又∵S四边形BCED=(a+b)1,
∴ab+c1+ab=(a+b)1,
∴a1+b1=c1.
利用图1进行证明:
证明:如图,连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a,∵S四边形ADCB=S△ACD+S△ABC=b1+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c1+a(b﹣a),
∴b1+ab=c1+a(b﹣a),
∴a1+b1=c1.
本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.
15、(1)见解析;(2)8;(3)80分
【解析】
(1)利用总人数200减去其它各组的人数即可求得第二组的人数,从而作出直方图;
(2)设抽了x人,根据各层抽取的人数的比例相等,即可列方程求解;
(3)利用总人数乘以一等奖的人数,据此即可判断.
【详解】
解:(1)200﹣(35+40+70+10)=45,如下图:
(2)设抽了x人,则,解得x=8;
(3)依题意知获一等奖的人数为200×25%=50(人).
则一等奖的分数线是80分.
16、(1)见解析 (2) ,理由见解析.
【解析】
(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)由正方形的性质逆推得,结合等腰三角形的性质可以得到答案.
【详解】
(1)证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=×180°=90°,
又∵AD⊥BC,CE⊥AN, ∴∠ADC=∠CEA=90°,
∴四边形ADCE为矩形.
(2)当时,四边形ADCE是一个正方形.
理由:∵AB=AC, AD⊥BC ,
, ,
∵四边形ADCE为矩形, ∴矩形ADCE是正方形.
∴当时,四边形ADCE是一个正方形.
本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.
17、 (1) ;(2)6.
【解析】
(1)利用待定系数法,把点与代入解析式列出方程组即可求得解析式;
(2)把x=3代入(1)中得到的解析式即可求得y值.
【详解】
解:(1)∵一次函数的图象经过点与,
∴,
解得:,
∴一次函数的解析式为.
(2)中,
当时,.
本题考查了一次函数,运用待定系数法求一次函数的解析式是必备技能,要熟练掌握.
18、(1)x=-2;(2)a=-3.
【解析】
(1)将a=3代入,求解-=1的根,验根即可,
(2)先求出增根是x=1,将分式化简为ax+1+2=x-1,代入x=1即可求出a的值.
【详解】
解:(1)当a=3时,原方程为-=1,
方程两边同乘x-1,得3x+1+2=x-1,
解这个整式方程得x=-2,
检验:将x=-2代入x-1=-2-1=-3≠0,
∴x=-2是原分式方程的解.
(2)方程两边同乘x-1,得ax+1+2=x-1,
若原方程有增根,则x-1=0,解得x=1,
将x=1代入整式方程得a+1+2=0,解得a=-3.
本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、30°
【解析】
分析:判断△ABE是顶角为150°的等腰三角形,求出∠EBA的度数后即可求解.
详解:因为四边形ABCD是正方形,所以AB=AD,∠BAD=90°,∠ABD=45°.
因为△ADE是等边三角形,所以AD=AE,∠DAE=60°,
所以AB=AE,∠BAE=150°,所以∠EBA=(180°-150°)=15°,
所以∠EBD=∠ABD-∠EBA=45°-15°=30°.
故答案为30°.
点睛:本题考查了正方形和等边三角形的性质,正方形的四边都相等,四个角都是直角,每一条对角线平分一组对角.
20、2
【解析】
将x=2代入函数解析式可得出y的值.
【详解】
由题意得:
y=2×2−2=2.
故答案为:2.
此题考查函数值,解题关键在于将x的值代入解析式.
21、
【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半求出A1B1=AC,B1C1=AB,A1C1=BC,从而得到△A1B1C1是△ABC周长的一半,依此类推,下一个三角形是上一个三角形的周长的一半,根据此规律求解即可.
【详解】
∵△ABC的三条中位线组成△A1B1C1,
∴A1B1=AC,B1C1=AB,A1C1=BC,
∴△A1B1C1的周长=△ABC的周长=×3=,
依此类推,△A2B2C2的周长=△A1B1C1的周长=×=,
则△A5B5C5的周长为=,
故答案为.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半的性质,求出后一个三角形的周长等于前一个三角形的周长的一半是解题的关键.
22、m>-2且m≠0
【解析】
分析:本题解出分式方程的解,根据题意解为正数并且解不能等于2,列出关于m的取值范围.
解析:解方程 解为正数,∴ 且m≠0.
故答案为m>-2且m≠0
23、1
【解析】
先根据不等式的性质求出不等式的解集,再找出不等式的非负整数解相加即可.
【详解】
所以不等式的非负整数解为0,1,2
则所求的和为
故答案为:1.
本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)反比例函数的解析式为y1=,一次函数的解析式为 y1=1x+1;(1)﹣1<x<0或x>1;(3)C的坐标(1,0)或(﹣3,0).
【解析】
(1)根据待定系数法,可得函数解析式;
(1)根据一次函数图象在上方的部分是不等式的解,可得答案;
(3)根据面积的和差,可得答案.
【详解】
(1)∵函数y1=的图象过点A(1,4),即4=,
∴k=4,即y1=,
又∵点B(m,﹣1)在y1=上,
∴m=﹣1,
∴B(﹣1,﹣1),
又∵一次函数y1=ax+b过A、B两点,
即 ,
解之得.
∴y1=1x+1.
反比例函数的解析式为y1=,
一次函数的解析式为 y1=1x+1;
(1)要使y1<y1,即函数y1的图象总在函数y1的图象下方,
∴﹣1<x<0或x>1;
(3)如图,直线AB与x轴交点E的坐标(﹣1,0),
∴S△ABC=S△AEC+S△BEC=EC×4+EC×1=2.
∴EC=1,
-1+1=1,-1-1=-3,
∴C的坐标(1,0)或(﹣3,0).
本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,函数与不等式的关系.
25、(1)240;(2)(12,2400);(1)s=240t;(4)李越,1
【解析】
(1)由函数图象中的数据可以直接计算出李越骑车的速度;
(2)根据题意和图象中点A的坐标可以直接写出点B的坐标;
(1)根据函数图象中的数据和待定系数法,可得s与t的函数表达式;
(4)根据函数图象可以得到谁先到达乙地,并求出先到几分钟.
【详解】
(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,
故答案为:240;
(2)由题意可得,10+2=12(分钟),
点B的坐标为(12,2400),
故答案为:(12,2400);
(1)设李越从乙地骑往甲地时,s与t之间的函数表达式为:s=kt,
由题意得:2400=10k,得:k=240,
即李越从乙地骑往甲地时,s与t之间的函数表达式为:s=240t,
故答案为:s=240t;
(4)由图象可知,李越先到达乙地,先到达:2400÷96-(10×2+2)=1(分钟),
故答案为:李越,1.
本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,并利用数形结合的思想,是解题的关键.
26、(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元),(3)全校共捐款34200元
【解析】
(1)各长方形的高度之比为3:4:5:8:6,就是已知捐款人数的比是3:4:5:8:6,求一共调查多少人可以根据捐款25元和30元的学生一共42人.就可以求出调查的总人数;
(2)众数就是出现次数最多的数,中位数就是按大小顺序排列处于中间位置的两个数的平均数;
(3)估计全校学生捐款数,就可以先求出这些人的学生的平均捐款数,可以近似等于全校学生的平均捐款数.
【详解】
解:(1)设捐款 30 元的有 6 x 人,则 8 x +6x=42,得 x=3。则捐款人数共有 3 x+4 x+5 x+8 x+6 x=78(人);
(2)由图象可知:众数为 25(元);
由于本组数据的个数为 78,按大小顺序排列处于中间位置的两个数都是 25(元),
故中位数为 25(元);
(3)全校共捐款(9×10+12×15+15×20+24×25+18×30)×=34200(元).
故答案为:(1)捐款人数共有 78人;(2)众数为 25(元);中位数为 25(元);(3)全校共捐款34200元.
本题考查平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本估计总体.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份安徽省宿州市埇桥区闵贤中学2024年九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省宿州市第十一中学2024年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届安徽省宿州九年级数学第一学期开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。