北京市大兴区2025届九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).
A.
B.
C.
D.
2、(4分)下列从左边到右边的变形,是因式分解的是
A.B.
C.D.
3、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )
A.30°B.45°C.60°D.90°
4、(4分)如图,点为的平分线上的一点,于点.若,则到的距离为( )
A.5B.4C.3.5D.3
5、(4分)对一组数据:﹣2,1,2,1,下列说法不正确的是( )
A.平均数是1B.众数是1C.中位数是1D.极差是4
6、(4分)如图,AB∥CD∥EF,AC=4,CE=6,BD=3,则DF的值是( ).
A.4.5B.5C.2D.1.5
7、(4分)已知正比例函数()的函数值y随x的增大而减小,则一次函数的图像经过的象限为 ( )
A.二、三、四 B.一、二、四 C.一、三、四 D.一、二、三
8、(4分)下列等式从左到右的变形,属于因式分解的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,用若干个全等正五边形进行拼接,使相邻的正五边形都有一条公共边,这样恰好可以围成一圈,且中间形成一个正多边形,则这个正多边形的边数等于_________.
10、(4分)函数y=﹣6x+5的图象是由直线y=﹣6x向_____平移_____个单位长度得到的.
11、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
12、(4分)如图,在平行四边形中,=5,=7,平分∠交边于点,则线段的长度为________.
13、(4分)一组数据:5,8,7,6,9,则这组数据的方差是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知直线y=+1与x轴、y轴分别交于点A、B,以线AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90、点P(x、y)为线段BC上一个动点(点P不与B、C重合),设△OPA的面积为S。
(1)求点C的坐标;
(2)求S关于x的函数解析式,并写出x的的取值范围;
(3)△OPA的面积能于吗,如果能,求出此时点P坐标,如果不能,说明理由.
15、(8分)某校计划购进A,B两种树木共100棵进行校园绿化,已知A种树木每棵100元,B种树木每棵80元,因布局需要,购买A种树木的数量不少于B种树木数量的3倍,实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.
16、(8分)在△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.
(1)若a=5,b=10,求c的值;(2)若c=,b=1,求a的值.
17、(10分)如图,在中,,,,,求的长.
18、(10分)如图,在△ABC中,AB =AC,BD⊥AC,CE⊥AB,求证:BD=CE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.
20、(4分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
21、(4分)已知一个样本的数据为1、2、3、4、x,它的平均数是3,则这个样本方差=_______
22、(4分)若,则等于______.
23、(4分)如图矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.
二、解答题(本大题共3个小题,共30分)
24、(8分)用无刻度的直尺按要求作图,请保留画图痕迹,不需要写作法.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.
(2)如图2,在8×6的正方形网格中,请用无刻度直尺画一个与△ABC面积相等,且以BC为边的平行四边形,顶点在格点上.
25、(10分)某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了笔试与面试,甲、乙、丙三人的笔试成绩分别为95分、94分和94分.他们的面试成绩如表:
(1)分别求出甲、乙、丙三人的面试成绩的平均分、、;
(2)若按笔试成绩的40%与面试成绩的60%的和作为综合成绩,综合成绩高者将被录用,请你通过计算判断谁将被录用.
26、(12分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.
(1)求点停止运动时,的长;
(2) 两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.
(3) 两点在运动过程中,求使与相似的时间的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:利用知识点:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,知:选项A是轴对称图形,但不是中心对称图形;选项B和C,既是轴对称图形又是中心对称图形;选项D是中心对称图形,但不是轴对称图形.
考点:轴对称图形和中心对称图形的定义
2、B
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法;因式分解的要求:分解要彻底,小括号外不能含整式加减形式.
【详解】
A选项,利用提公因式法可得: ,因此A选项错误,
B选项,根据立方差公式进行因式分解可得:,因此B选项正确,
C选项,不属于因式分解,
D选项,利用提公因式法可得:,因此D选项错误,
故选B.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
3、A
【解析】
根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵线段AE绕点A逆时针旋转后与线段AF重合,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴∠DAF=∠BAE,
∵∠BAE=30°,
∴∠DAF=30°,
∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
∴旋转角为30°.
故选:A.
本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.
4、B
【解析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.
【详解】
如图,作DH⊥OB于H.
∵OC平分∠AOB,DE⊥OA,DH⊥OB,
∴DE=DH=4,
故选B.
本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.
5、A
【解析】
试题分析:A、这组数据的平均数是:(﹣2+1+2+1)÷4=,故原来的说法不正确;
B、1出现了2次,出现的次数最多,则众数是1,故原来的说法正确;
C、把这组数据从小到大排列为:﹣2,1,1,2,中位数是1,故原来的说法正确;
D、极差是:2﹣(﹣2)=4,故原来的说法正确.
故选A.
考点:极差,算术平均数,中位数,众数.
6、A
【解析】
直接根据平行线分线段成比例定理即可得出结论.
【详解】
∵直线AB∥CD∥EF,AC=4,CE=6,BD=3,
∴,即,解得DF=4.1.
故选A.
本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.
7、A
【解析】
试题分析:∵正比例函数()的函数值y随x的增大而减小,∴k<0,∴一次函数的图像经过二、三、四象限.故选A.
考点:一次函数的性质.
8、B
【解析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、不是因式分解,故本选项不符合题意;
B、是因式分解,故本选项符合题意;
C、不是因式分解,故本选项不符合题意;
D、不是因式分解,故本选项不符合题意;
故选:B.
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先求得正五边形围成的多边形的内角的度数,然后根据多边形的内角和定理即可求得答案.
【详解】
解:正五边形的内角度数是:=18°,
则正五边形围成的多边形的内角的度数是:360°−2×18°=144°,
根据题意得:180(n−2)=144n,
解得:n=1.
故答案为1.
本题考查了多边形的内角和定理,正确理解定理,求得围成的多边形的内角的度数是关键.
10、上 1.
【解析】
根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
【详解】
解:函数y=-6x+1的图象是由直线y=-6x向上平移1个单位长度得到的.
故答案为:上,1.
本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
11、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
12、1
【解析】
根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.
【详解】
∵四边形ABCD为平行四边形,
∴AE∥BC,AD=BC=7cm,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AE=AB=5cm,
∴DE=AD-AE=7-5=1cm
故答案为:1.
本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.
13、2
【解析】
先求出平均数,然后再根据方差的计算公式进行求解即可.
【详解】
=7,
=2,
故答案为:2.
本题考查了方差的计算,熟记方差的计算公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)(4,3);(2)S=, 0<x<4;(3)不存在.
【解析】
(1)直线y=+1与x轴、y轴分别交于点A、B,可得点A、B的坐标,过点C作CH⊥x轴于点H,如图1,易证△AOB≌△CHA,从而得到AH=OB、CH=AO,就可得到点C的坐标;
(2)易求直线BC解析式,过P点作PG垂直x轴,由△OPA的面积=即可求出S关于x的函数解析式.
(3)当S=求出对应的x即可.
【详解】
解:(1)∵直线y=+1与x轴、y轴分别交于点A、B,
∴A点(3,0),B点为(0,1),
如图:过点C作CH⊥x轴于点H,
则∠AHC=90°.
∴∠AOB=∠BAC=∠AHC=90°,
∴∠OAB=180°-90°-∠HAC=90°-∠HAC=∠HCA.
在△AOB和△CHA中,
,
∴△AOB≌△CHA(AAS),
∴AO=CH=3,OB=HA=1,
∴OH=OA+AH=4
∴点C的坐标为(4,3);
(2)设直线BC解析式为y=kx+b,由B(0,1),C(4,3)得:
,解得,
∴直线BC解析式为,
过P点作PG垂直x轴,△OPA的面积=,
∵PG=,OA=3,
∴S==;
点P(x、y)为线段BC上一个动点(点P不与B、C重合),
∴0<x<4.
∴S关于x的函数解析式为S=, x的的取值范围是0<x<4;
(3)当s=时,即,解得x=4,不合题意,故P点不存在.
本题主要考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、勾股定理、三角形的面积公式等知识,构造全等三角形是解决第(1)小题的关键.
15、购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
【解析】
设购买A种树木x棵,则购买B种树木(100﹣x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”,列出关于x的一元一次不等式,求得x的取值范围,根据“A种树木每棵100元,B种树木每棵80元,实际付款总金额按市场价九折优惠,”把实际付款的总金额W用x表示出来,根据x的取值范围,求出W的最小值,即可得到答案.
【详解】
设购买A种树木x棵,则购买B种树木(100﹣x)棵,
根据题意得:x≥3(100﹣x),
解得:x≥75,
设实际付款的总金额为W元,
根据题意得:W=0.9[100x+80(100﹣x)]=18x+7200,
W是关于x的一次函数,且随着x的增大而增大,
即当x取到最小值75时,W取到最小值,
W最小=18×75+7200=8550,
100﹣75=25,
即购买A种树木75棵,购买B种树木25棵,
答:购买A种树木75棵,购买B种树木25棵,实际所花费用最省,最省的费用为8550元.
本题考查了一元一次不等式的应用和一次函数的性质,正确找出不等关系,列出一元一次不等式,并正确利用一次函数的增减性是解决本题的关键.
16、(1) ;(1) .
【解析】
(1)由勾股定理知:c1=a1+b1.
(1)由勾股定理知:a1=c1﹣b1.
【详解】
(1)由勾股定理知:c1=a1+b1=51+101=115.则.
(1)由勾股定理知:a1=c1﹣b1=()1﹣11=.则.
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
17、
【解析】
在求出BD的长,在中求出CD的长,利用BC=BD+CD可得出结果.
【详解】
解:,
.
在中,
,
,
.
在中,
,
.
.
.
本题主要考查勾股定理,以及含特殊角的直角三角形边之间的关系,掌握基本公式是解题关键.
18、略
【解析】
证明:∵BD⊥AC,CE⊥AB
∴∠ADB=∠AEC=90°
在△ABD和△AEC中
∴△ABD≌△ACE (AAS)
∴BD=CE.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到
的值.
【详解】
∵△ACB与△ECD都是等腰直角三角形,
∴∠ECD=∠ACB=90°,
∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,
∴,∠ECD−∠ACD=∠ACB−∠ACD,
∴∠ACE=∠BCD.
在△AEC和△BDC中,
,
∴△AEC≌△BDC(SAS),
∴AE=BD,∠E=∠BDC,
∴∠BDC=45°,
∴∠BDC+∠ADC=90°,
即∠ADB=90°.
∴.
∵,
∴可设AE=k,则AD=3k,BD=k,
∴,
∴BC=,
∴.
故答案为:.
此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.
20、8.
【解析】
由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.
【详解】
由作法得AE平分∠BAD,AB=AF,
则∠1=∠2,
∵四边形ABCD为平行四边形,
∴BE∥AF,∠BAF=∠C=60°,
∴∠2=∠BEA,
∴∠1=∠BEA=30°,
∴BA=BE,
∴AF=BE,
∴四边形AFEB为平行四边形,△ABF是等边三角形,
而AB=AF,
∴四边形ABEF是菱形;
∴BF⊥AE,AG=EG,
∵四边形ABEF的周长为16,
∴AF=BF=AB=4,
在Rt△ABG中,∠1=30°,
∴BG=AB=2,AG=BG=2,
∴AE=2AG=,
∴菱形ABEF的面积;
故答案为:
本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF是菱形是解题的关键.
21、2
【解析】
已知该样本有5个数据.故总数=3×5=15,则x=15-1-2-3-4=5,
则该样本方差=.
本题难度较低,主要考查学生对简单统计中平均数与方差知识点的掌握,计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.
22、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
23、
【解析】
试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.
试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,
∵∠ACG=∠AGC,
∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,
∴∠CAF=∠CAG+∠GAF=100°+20°=120°,
∴∠BAC=∠CAF-∠BAF=30°,
在Rt△ABC中,AC=2BC=2AD=2,
由勾股定理,AB=.
【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析
【解析】
(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)根据平行四边形的面积公式和三角形的面积公式可得,平行四边形的BC的对边到BC的距离等于A到BC的距离的一半,然后根据平行四边形的对边相等解答.
【详解】
解:(1)连接AB,EF,交点设为P,射线AP即为所求;
(2)如图所示,平行四边形MBCN即为所求.
本题考查了矩形的性质和平行四边形的判定,熟练掌握性质定理和网格特点是解题关键.
25、:(1)=91分,=92分,=91分;(2)乙将被录用.
【解析】
(1)根据算术平均数的含义和求法,分别用三人的面试的总成绩除以3,求出甲、乙、丙三人的面试的平均分、和即可;
(2)首先根据加权平均数的含义和求法,分别求出三人的综合成绩各是多少;然后比较大小,判断出谁的综合成绩最高,即可判断出谁将被录用.
【详解】
解:(1)=(94+89+90)÷3=273÷3=91(分),
=(92+90+94)÷3=276÷3=92(分),
=(91+88+94)÷3=273÷3=91(分),
∴甲的面试成绩的平均分是91分,乙的面试成绩的平均分是92分,丙的面试成绩的平均分是91分;
(2)甲的综合成绩=40%×95+60%×91=38+54.6=92.6(分),
乙的综合成绩=40%×94+60%×92=37.6+55.2=92.8(分),
丙的综合成绩=40%×94+60%×91=37.6+54.6=92.2(分),
∵92.8>92.6>92.2,
∴乙将被录用.
故答案为(1)=91分,=92分,=91分;(2)乙将被录用.
本题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.还考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
26、(1)(2)(3)或
【解析】
(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.
(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.
(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.
【详解】
(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,
∴AB==10,
点Q运动到点A时,t==5,
∴AP=5,PC=1,
在Rt△PBC中,PB=.
(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.
∵四边形PQCE是菱形,
∴PC⊥EQ,PK=KC,
∵∠QKC=∠QDC=∠DCK=90°,
∴四边形QDCK是矩形,
∴DQ=CK,
∴,
解得t=.
∴t=s时,四边形PQCE是菱形.
(3)如图2中,当∠APQ=90°时,
∵∠APQ=∠C=90°,
∴PQ∥BC,
∴,
∴,
∴.
如图3中,当∠AQP=90°时,
∵△AQP∽△ACB,
∴,
∴,
∴,
综上所述,或s时,△APQ是直角三角形.
本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.
题号
一
二
三
四
五
总分
得分
候选人
评委1
评委2
评委3
甲
94
89
90
乙
92
90
94
丙
91
88
94
北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份北京市鲁迅中学2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市通州区数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2025届北京市通州区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届北京市大兴区数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届北京市大兴区数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。