|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】
    立即下载
    加入资料篮
    北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】01
    北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】02
    北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】

    展开
    这是一份北京市海淀区师达中学2024年数学九年级第一学期开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知反比例函数的图象上有两点A(a-3,2b),B(a,b-2),且a<0,则的取值范围是( )
    A.B.C.D.
    2、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为( )
    A.1B.2C.3D.4
    3、(4分)把两个全等的等腰直角三角形如图放置在一起,点关于对称交,于点,则与的面积比为( )
    A.B.C.D.
    4、(4分)已知关于的方程是一元二次方程,则的取值范围是( )
    A.B.C.D.任意实数
    5、(4分)已知实数m、n,若m<n,则下列结论成立的是( )
    A.m﹣3<n﹣3B.2+m>2+nC.D.﹣3m<﹣3n
    6、(4分)已知关于x的方程的解是正数,那么m的取值范围为( )
    A.m>-6且m≠2B.m<6C.m>-6且m≠-4D.m<6且m≠-2
    7、(4分)已知关于的一次函数的图象如图所示,则实数的取值范围为( )
    A.B.C.D.
    8、(4分)下列二次根式中是最简二次根式的为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)分解因式:1﹣x2= .
    10、(4分)将代入反比例函数中,所得函数值记为,又将代入函数中,所得函数值记为,再将代入函数中,所得函数值记为,如此继续下去,则________.
    11、(4分)已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.
    12、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
    13、(4分)方程在实数范围内的解是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在中,,、分别是、的中点,延长到,使得,连接、.
    (1)求证:四边形为平行四边形;
    (2)若四边形的周长是32,,求的面积;
    (3)在(2)的条件下,求点到直线的距离.
    15、(8分)先化简,然后从的范围内选取一个合适的整数作为的值代入求值.
    16、(8分)计算(2+1)(2﹣1)﹣(1﹣2)2
    17、(10分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?
    18、(10分)阅读下面材料:数学课上,老师出示了这祥一个问题:
    如图,在正方形ABCD中,点F在AB上,点E在BC延长线上。且AF=CE,连接EF,过点D作DH⊥FE于点H,连接CH并延长交BD于点0,∠BFE=75°.求的值.某学习小组的同学经过思考,交流了自己的想法:
    小柏:“通过观察和度量,发现点H是线段EF的中点”。
    小吉:“∠BFE=75°,说明图形中隐含着特殊角”;
    小亮:“通过观察和度量,发现CO⊥BD”;
    小刚:“题目中的条件是连接CH并延长交BD于点O,所以CO平分∠BCD不是己知条件。不能由三线合一得到CO⊥BD”;
    小杰:“利用中点作辅助线,直接或通过三角形全等,就能证出CO⊥BD,从而得到结论”;……;
    老师:“延长DH交BC于点G,若刪除∠BFB=75°,保留原题其余条件,取AD中点M,连接MH,如果给出AB,MH的值。那么可以求出GE的长度”.
    请回答:(1)证明FH=EH;
    (2)求的值;
    (3)若AB=4.MH=,则GE的长度为_____________.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)关于x的方程=3有增根,则m的值为___________.
    20、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
    21、(4分)已知,如图△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,则AB=_____cm.
    22、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
    23、(4分)因式分解:x2+6x=_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.
    25、(10分)如图,在▱ABCD中,CE平分∠BCD,且交AD于点E,AF∥CE,且交BC于点F.
    (1)求证:△ABF≌△CDE;
    (2)如图,若∠B=52°,求∠1的大小.
    26、(12分)如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.
    (1)证明:BE=CF.
    (2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
    (3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由a<0可得a-3<0,再根据反比例函数的图象上有两点A(a-3,2b),B(a,b-2),继而可得2b<0且b-2<0,从而可得b<0,再由2b=,b-2=,得出a=,a=,继而根据a<0,可得,由此结合b<0即可求得答案.
    【详解】
    ∵a<0,∴a-3<0,
    ∵反比例函数的图象上有两点A(a-3,2b),B(a,b-2),
    ∴2b=,b-2=,
    ∴2b<0且b-2<0,∴b<0,
    ∵2b=,b-2=,
    ∴a-3=,a=,
    即a=,a=,
    又a<0,
    ∴,
    ∴-1∴-1故选C.
    本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,解不等式组等知识,熟练掌握相关知识是解题的关键.
    2、B
    【解析】
    根据平行四边形的性质可得∠AFB=∠FBC,由角平分线可得∠ABF=∠FBC,所以∠AFB=∠ABF,所以AF=AB=1,同理可得DF=CD=1,则根据EF=AF+DF-AD即可求解.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=10,DC=AB=1.
    ∴∠AFB=∠FBC.
    ∵BF平分∠ABC,
    ∴∠ABF=∠FBC.
    ∴∠AFB=∠ABF.
    ∴AF=AB=1.
    同理可得DF=DC=1.
    ∴EF=AF+DF﹣AD=1+1﹣10=2.
    故选:B.
    本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.
    3、D
    【解析】
    由轴对称性质得EF⊥AC,由∠A=45°,得出△AMN是等腰直角三角形,由等腰直角三角形的性质得CM=EM=CE,由△ECF≌△ACB得出AC=CE=BC,则AM=(1-)AC,由等腰直角三角形面积公式即可得出结果.
    【详解】
    解:∵△ACB是等腰直角三角形,
    ∴AC=BC,∠A=45°,
    ∵点E,F关于AC对称,
    ∴EF⊥AC,
    ∵∠A=45°,
    ∴△AMN是等腰直角三角形,
    ∵△ECF是等腰直角三角形,
    ∴CM=EM==CE,
    ∵△ECF≌△ACB,
    ∴AC=CE=BC,
    ∴AM=AC-CM=AC-AC=(1-)AC,
    ∴=== = .
    故选:D.
    本题考查等腰直角三角形的判定与性质、轴对称的性质、等腰直角三角形的面积公式等知识,熟练掌握等腰直角三角形的性质是解题的关键.
    4、A
    【解析】
    利用一元二次方程的定义求解即可.
    【详解】
    解:∵关于x的方程是一元二次方程,
    ∴m+1≠0,即m≠−1,
    故选:A.
    此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.
    5、A
    【解析】
    根据不等式的性质逐项分析即可.
    【详解】
    A. ∵m<n,∴ m﹣3<n﹣3,正确;
    B. ∵m<n,∴2+m<2+n,故错误;
    C. ∵m<n,∴ ,故错误;
    D. ∵m<n,∴﹣3m>﹣3n,故错误;
    故选A.
    本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.
    6、C
    【解析】
    先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.
    【详解】
    将分式方程转化为整式方程得:1x+m=3x-2
    解得:x=m+2.
    ∵方程得解为正数,所以m+2>0,解得:m>-2.
    ∵分式的分母不能为0,
    ∴x-1≠0,
    ∴x≠1,即m+2≠1.
    ∴m≠-3.
    故m>-2且m≠-3.
    故选:C.
    本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.
    7、B
    【解析】
    由一次函数y=(1-m)x+2的图象不经过第四象限,则1-m>0,通过解不等式可得到m的取值范围.
    【详解】
    ∵关于x的一次函数y=(1-m)x+2的图象不经过第四象限,
    ∴1-m>0,
    解得,.
    故选B..
    本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.
    8、B
    【解析】
    根据最简二次根式的定义进行解答即可.
    【详解】
    解:根据最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”可知,选项A、C、D中的二次根式都不是最简二次根式,只有B中的二次根式是最简二次根式.
    本题考查的是最简二次根式的定义,掌握最简二次根式的定义:“满足条件:(1)被开方数中不含开得尽方的因数和因式;(2)被开方数中不含分母.”是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(1+x)(1﹣x).
    【解析】
    试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).
    10、2
    【解析】
    可依次求出y的值,寻找y值的变化规律,根据规律确定的值.
    【详解】
    解:将代入反比例函数中得;
    将代入函数得;
    将代入函数得;
    将代入函数得
    由以上计算可知:y的值每三次重复一下
    故y的值在重复670次后又计算了2次,所以
    故答案为:2
    本题属于反比例函数的求值规律题,找准函数值的变化规律是解题的关键.
    11、k<2.
    【解析】
    由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.
    【详解】
    ∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,
    ∴k-2<0,
    解得k<2,
    故答案为k<2.
    此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.
    12、1
    【解析】
    根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
    【详解】
    当OB=1cm时,四边形ABCD是平行四边形,
    ∵BD=16cm,OB=1cm,
    ∴BO=DO,
    又∵AO=OC,
    ∴四边形ABCD是平行四边形,
    故答案为1.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    13、
    【解析】
    由x3+8=0,得x3=-8,所以x=-1.
    【详解】
    由x3+8=0,得
    x3=-8,
    x=-1,
    故答案为:x=-1.
    本题考查了立方根,正确理解立方根的意义是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)96;(3)4.8
    【解析】
    (1)根据三角形的中位线与平行四边形的判定即可求解;
    (2)根据平行四边形的性质与勾股定理的应用即可求解;
    (3)过作,过作交延长线于,根据直角三角形的面积公式即可求解.
    【详解】
    (1)证明∵,分别是,中点
    ∴,
    ∴,
    ∴,
    ∴四边形为平行四边形
    (2)∵

    ∵,为中点



    设,

    化简得:
    解得:
    ∴,

    (3)过作,过作交延长线于,
    由(1):

    在直角三角形中,,,

    此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
    15、,2.
    【解析】
    分析:首先对括号内的式子进行通分相减,把除法转化为乘法运算.
    本题解析:原式=
    =
    ∵ ,且 x为整数 ,
    ∴若使分式有意义, 只能取和1.
    当x =1时,原式=2.
    本题考查了分式的化简求值,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.
    16、4-2.
    【解析】
    直接利用乘法公式以及二次根式的性质分别计算得出答案.
    【详解】
    解:原式=12-1-(1-4+12)=4-2
    此题主要考查了二次根式结合平方差公式和完全平方公式的混合运算,正确掌握相关运算法则是解题关键.
    17、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.
    【解析】
    设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.
    【详解】
    设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有

    解得x=20,
    经检验:x=20是原分式方程的解,且符合题意,
    则1.2x=1.
    答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.
    本题考查分式方程的应用和理解题意能力,关键是设出采用新工艺之前每小时加工x个,然后表示出采用新工艺后每小时加工多少个,再以时间做为等量关系列方程求解.
    18、(1)见解析;(2) ;(3)
    【解析】
    (1)如图1,连接DE,DF,证明△DAF≌△DCE(SAS)即可解决问题;
    (2)如图2,连接BH,先证出BH=EF,再证ΔBHC≌ΔDHC,得到∠HOB=90°,OC⊥BD,∠HBO=30°,得出OH=BH,即可解决问题;
    (3)如图3,连接OA,作MK⊥OA于K.首先证明OH=HC,利用平行线分线段成比例定理求出CG,再利用相似三角形的性质解决问题即可.
    【详解】
    (1)如图1,
    连接DE,DF
    ∵正方形ABCD
    ∴AD=CD=CB=AB
    ∠A=∠ADC=∠BCD=∠ABC=90°
    ∴∠DCE=∠A=90°
    ∴在ΔFAD和ΔECD中
    ∴ΔDAF≌ΔDCE(SAS)
    ∴DF=DE
    ∵DH⊥EF
    ∴FH=EH
    (2)如图2,连接BH,
    ∵ΔFAD≌ΔECD
    ∴∠ADF=∠CDE
    ∵∠ADC=90°=∠ADF+∠FDC
    ∴∠EDC+∠FDC=90°
    ∴∠FDE=90°
    ∴DH=EF=EH=FH
    ∵∠FBC=90°
    ∴BH=EF=EH=FH
    ∴BH=DH
    ∴在ΔBHC和ΔDHC中
    ∴ΔBHC≌ΔDHC(SSS)
    ∴∠BCH=∠DCH
    ∴OC⊥BD
    ∴∠HOB=90°
    ∵BH=FH,∠BFE =75°
    ∴∠FBH=∠BFH=75°
    ∵正方形ABCD
    ∴∠ABD=45°,∠HBO=30°
    ∴OH=BH
    ∴;
    (3)解:如图3,连接OA,作MK⊥OA于K.
    由(2)可知:A,O,C共线,
    ∴∠MAK=45°,
    ∵AM=MB=2,
    ∵CG∥AB,

    由△EHG∽△BCG,可得
    本题属于四边形综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m=-1.
    【解析】
    方程两边都乘以最简公分母,把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.
    【详解】
    方程两边都乘以(x−2)得,

    ∵分式方程有增根,
    ∴x−2=0,
    解得x=2,
    ∴4−3+m=3(2−2),
    解得
    故答案为
    考查分式方程的增根,增根就是使最简公分母等于0的未知数的值.
    20、
    【解析】
    由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
    【详解】
    解:∵∠B=90°,∠C=30°,AB=2,
    ∴AC=2AB=4,
    由勾股定理得:
    故答案为:.
    本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
    21、1
    【解析】
    试题分析:有△ABC∽△AED,可以得到比例线段,再通过比例线段可求出AB的值.
    解:∵△ABC∽△AED

    又∵AE=AC﹣EC=10

    ∴AB=1.
    考点:相似三角形的性质.
    22、3.
    【解析】
    运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
    【详解】
    解:∵等腰直角三角形ABC,等腰直角三角形CDE
    ∴∠ECD=45°,∠ACB=45°
    即AC⊥EC,且CE∥BF
    当AG⊥BF,时AG最小,
    所以由∵AF=AE
    ∴AG=CG=AC=3
    故答案为3
    本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
    23、x(x+6)
    【解析】
    根据提公因式法,可得答案.
    【详解】
    原式=x(6+x),
    故答案为:x(x+6).
    本题考查了因式分解,利用提公因式法是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、1.
    【解析】
    先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.
    【详解】
    解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
    ∴BC'=AB=3,CF=C'F
    在Rt△BC'F中,C'F2=BF2+C'B2,
    ∴CF2=(9-CF)2+9
    ∴CF=5
    ∴BF=1.
    本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.
    25、 (1)见解析;(2) ∠1=64°.
    【解析】
    (1)(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠BCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;
    (2)CE平分∠BCD得∠ECB=∠ECD,进而得到∠1=∠ECD,再由∠D=∠B=52°,运用三角形内角和,即可求解.
    【详解】
    解:(1)证明:∵四边形ABCD是平行四边形
    ∴AB=CD ∠B=∠D AD∥BC
    ∴∠1=∠ECB
    ∵AF∥CE
    ∴∠AFB=∠ECB
    ∴∠1=∠AFB
    ∴△ABF≌△CDE(AAS)
    (2) ∵CE平分∠BCD
    ∴∠ECB=∠ECD
    ∵∠1=∠ECB(已证)
    ∴∠1=∠ECD
    ∵∠B=52°
    ∴∠D=∠B=52°
    ∴∠1=∠ECD=
    本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.
    26、 (1)见解析;(2);(3)见解析
    【解析】
    试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;
    (2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;
    (3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.
    试题解析:(1)证明:连接AC,
    ∵∠1+∠2=60°,∠3+∠2=60°,
    ∴∠1=∠3,
    ∵∠BAD=120°,
    ∴∠ABC=∠ADC=60°
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∴△ABC、△ACD为等边三角形
    ∴∠4=60°,AC=AB,
    ∴在△ABE和△ACF中,

    ∴△ABE≌△ACF.(ASA)
    ∴BE=CF.
    (2)解:由(1)得△ABE≌△ACF,
    则S△ABE=S△ACF.
    故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,
    是定值.
    作AH⊥BC于H点,
    则BH=2,
    S四边形AECF=S△ABC
    =
    =
    =;
    (3)解:由“垂线段最短”可知,
    当正三角形AEF的边AE与BC垂直时,边AE最短.
    故△AEF的面积会随着AE的变化而变化,且当AE最短时,
    正三角形AEF的面积会最小,
    又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.
    由(2)得,S△CEF=S四边形AECF﹣S△AEF
    =﹣=.
    点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    北京市师达中学2025届九上数学开学综合测试试题【含答案】: 这是一份北京市师达中学2025届九上数学开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市海淀区师达中学2025届九年级数学第一学期开学监测试题【含答案】: 这是一份北京市海淀区师达中学2025届九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年北京市海淀区师达中学九上数学期末监测模拟试题含答案: 这是一份2023-2024学年北京市海淀区师达中学九上数学期末监测模拟试题含答案,共9页。试卷主要包含了如图,四边形内接于⊙,等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map