|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市人民大附属中学2024年九上数学开学检测试题【含答案】
    立即下载
    加入资料篮
    北京市人民大附属中学2024年九上数学开学检测试题【含答案】01
    北京市人民大附属中学2024年九上数学开学检测试题【含答案】02
    北京市人民大附属中学2024年九上数学开学检测试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市人民大附属中学2024年九上数学开学检测试题【含答案】

    展开
    这是一份北京市人民大附属中学2024年九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)能判定四边形是平行四边形的条件是( )
    A.一组对边平行,另一组对边相等
    B.一组对边相等,一组邻角相等
    C.一组对边平行,一组邻角相等
    D.一组对边平行,一组对角相等
    2、(4分)一次函数的图象经过( )
    A.一、二、三象限B.一、二、四象限
    C.二、三、四象限D.一、三、四象限
    3、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长为( )
    A.5B.7C.D.或5
    4、(4分)如果,那么下列各式正确的是( )
    A.a+5<b+5B.5a<5bC.a﹣5<b﹣5D.
    5、(4分)下列各组线段中,能构成直角三角形的是( )
    A.2cm,3cm,4cmB.1cm,1cm,cm
    C.5cm,12cm,14cmD.cm,cm,cm
    6、(4分)如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为( )
    A.3B.-3
    C.6D.-6
    7、(4分)函数y=中自变量x的取值范围是( )
    A.x≥﹣1 B.x≤﹣1 C.x>﹣1 D.x<﹣1
    8、(4分)顺次连结菱形各边中点所得到四边形一定是( ​)
    A.平行四边形B.正方形​C.矩形​D.菱形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.
    10、(4分)关于x的不等式组的解集为﹣3<x<3,则a=_____,b=_____.
    11、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
    12、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
    13、(4分)若点、在双曲线上,则和的大小关系为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)计算:
    (1) (2)
    15、(8分)如图,在正方形ABCD中,E、F是对角线BD上两点,将绕点A顺时针旋转 后,得到,连接EM,AE,且使得.
    (1)求证:;(2)求证:.
    16、(8分)某商品的进价为每件 30 元,现在的售价为每件 40 元,每星期可卖出 150 件.市场调查 发现:如果每件的售价每涨 1 元(售价每件不能高于 45 元),那么每星期少卖 10 件,设每 件涨价 x 元( x 为非负整数),每星期的销量为 y 件.
    (1)写出 y 与 x 的关系式;
    (2)要使每星期的利润为 1560 元,从有利于消费者的角度出发,售价应定为多少?
    17、(10分)如图1,在平面直角坐标系中,一次函数的图象与轴,轴分别交于点,点,过点作轴,垂足为点,过点作轴,垂足为点,两条垂线相交于点.
    (1)线段,,的长分别为_______,_________,_________;
    (1)折叠图1中的,使点与点重合,再将折叠后的图形展开,折痕交于点,交于点,连接,如图1.
    ①求线段的长;
    ②在轴上,是否存在点,使得为等腰三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由.
    18、(10分)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.
    (1)直接写出AM= ;
    (2)P是射线AM上的一点,Q是AP的中点,设PQ=x.
    ①AP= ,AQ= ;
    ②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.
    20、(4分)如图,菱形 OABC 的顶点 O 是原点,顶点 B 在 y 轴上,菱形的两条对角线的长分别是 8 和 6(AC>BC),反比例函数 y (x<0)的图象经过点 C,则 k 的值为_____.
    21、(4分)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=____________.
    22、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.
    23、(4分)函数中自变量x的取值范围是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.
    (1)已知点F在线段BC上.
    ①若AB=BE,求∠DAE度数;
    ②求证:CE=EF;
    (2)已知正方形边长为2,且BC=2BF,请直接写出线段DE的长.
    25、(10分)已知一次函数y=(3-k)x-2k2+18.
    (1)当k为何值时,它的图象经过原点?
    (2)当k为何值时,它的图象经过点(0,-2)?
    (3)当k为何值时,它的图象平行于直线y=-x?
    (4)当k为何值时,y随x增大而减小?
    26、(12分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
    (1)判断四边形的形状,并说明理由,
    (2)若,求的长,
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平行四边形的判定定理进行推导即可.
    【详解】
    解:如图所示:
    若已知一组对边平行,一组对角相等,
    易推导出另一组对边也平行,
    两组对边分别平行的四边形是平行四边形.
    故根据平行四边形的判定,只有D符合条件.
    故选D.
    考点:本题考查的是平行四边形的判定
    点评:解答本题的关键是熟练掌握平行四边形的判定定理:
    ①两组对边分别平行的四边形是平行四边形;
    ②两组对边分别相等的四边形是平行四边形;
    ③两组对角分别相等的四边形是平行四边形;
    ④对角线互相平分的四边形是平行四边形;
    ⑤一组对边平行且相等的四边形是平行四边形.
    2、D
    【解析】
    根据一次函数的解析式得出k及b的符号,再根据一次函数的性质进行解答即可.
    【详解】
    解:∵一次函数中k=2>0,b=-4<0,
    ∴此函数的图象经过一、三、四象限.
    故选:D.
    本题考查的是一次函数的性质,正确理解一次函数y=kx+b(k≠0)的图象与k,b的关系是解题的关键.
    3、D
    【解析】
    分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.
    4、D
    【解析】
    根据不等式的性质逐一进行分析判断即可得.
    【详解】
    ∵,
    ∴a+5>b+5,故A选项错误,
    5a>5b,故B选项错误,
    a-5>b-5,故C选项错误,
    ,故D选项正确,
    故选D.
    本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
    5、B
    【解析】
    根据勾股定理的逆定理逐一进行判断即可得.
    【详解】
    解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;
    B、12+12=()2,故是直角三角形,故此选项符合题意;
    C、52+122≠142,故不是直角三角形,故此选项不符合题意;
    D、(,故不是直角三角形,故此选项不符合题意,
    故选B.
    本题考查了勾股定理的逆定理,判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可.
    6、D
    【解析】
    根据三角形ABO的面积为3,得到|k|=6,即可得到结论.
    【详解】
    解:∵三角形AOB的面积为3,
    ∴,
    ∴|k|=6,
    ∵k<0,
    ∴k=-6,
    故选:D.
    本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.
    7、A
    【解析】
    根据被开方数大于等于0列式计算即可得解.
    【详解】
    解:由题意得,,
    解得.
    故选:A.
    本题考查了函数自变量的范围,一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    8、C
    【解析】
    根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.
    【详解】
    如图,四边形ABCD是菱形,且E. F. G、H分别是AB、BC、CD、AD的中点,
    则EH∥FG∥BD,EF=FG=BD;EF∥HG∥AC,EF=HG=AC,AC⊥BD.
    故四边形EFGH是平行四边形,
    又∵AC⊥BD,
    ∴EH⊥EF,∠HEF=90°,
    ∴边形EFGH是矩形.
    故选:C.
    本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.
    【详解】
    设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:
    5x-2(20-x)≥60,
    解得:x≥14,
    ∵x为整数,
    ∴x的最小值为1.
    故答案是:1.
    考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.
    10、-3 3
    【解析】
    ,,
    所以,
    解得.
    11、(﹣5,4).
    【解析】
    首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
    【详解】
    由题知A(3,0),B(-2,0),D在y轴上,
    ∴AB=3-(-2)=5,OA=3,BO=2,
    由菱形邻边相等可得AD=AB=5,
    在Rt△AOD中,由勾股定理得:
    OD==4,
    由菱形对边相等且平行得CD=BA=5,
    所以C(-5,4).
    故答案为(﹣5,4).
    本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.
    12、2
    【解析】
    分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
    详解:∵点A的坐标为(2,4)且OA=AB,
    ∴O(0,0),B(4,0),C(6,-4),D(8,0),
    2017÷8=252……1,
    ∴b==2.
    点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
    13、
    【解析】
    根据反比例函数的增减性解答即可.
    【详解】
    将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.
    故答案为.
    此题考查反比例函数的性质,解题关键在于掌握其性质.
    三、解答题(本大题共5个小题,共48分)
    14、 (1); (2).
    【解析】
    (1)先进行二次根式的乘法运算,然后再化简二次根式,最后合并同类二次根式即可得解;
    (2)利用完全平方公式进行计算即可得解.
    【详解】
    (1)
    =
    =
    =;
    (2)
    =40-60+45
    =.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    15、(1)见解析;(2)见解析.
    【解析】
    (1)直接利用旋转的性质证明△AME≌△AFE(SAS),即可得出答案;
    (2)利用(1)中所证,再结合勾股定理即可得出答案.
    【详解】
    证明:(1)∵将绕点A顺时针旋转90°后,得到,
    ,,,




    在△AME和中



    (2)由(1)得:,
    在中,,
    又∵,

    此题主要考查了旋转的性质、全等三角形的判定和性质以及勾股定理等知识,正确得出△AME≌△AFE是解题关键.
    16、(1)y=150-10x(0≤x≤5且x为整数);(2)售价应定为42元.
    【解析】
    (1)根据每周销量=150-10×每件涨价钱数,即可得出y与x的关系式;
    (2)根据每周的总利润=每件商品的利润×每周的销量,可得关于x的一元二次方程,解之即得x的值,取其较小者代入40+x即可得出结论.
    【详解】
    解:(1)由题意,得y=150-10x(0≤x≤5且x为整数);
    (2)设每星期的利润为w元, 则w=(40+x-30)y =(x+10)(150-10x)=-10x2+50x+1500,
    要使每星期的利润为1560元,
    则w=1560,即-10x2+50x+1500=1560.
    解这个方程得:x1=2,x2=3.
    ∴当x=2或3时,可使每星期的利润为1560元,
    从有利于消费者的角度出发,应取x=2,此时40+x=42,即售价应定为42元.
    本题是一元二次方程的应用问题中较为典型的类型,解题的思路一般是先表示出销量,再表示出总利润,最后得出方程.需要注意的是,在列方程时,要认真审题,加强分析,注意题意中的“一涨一少”,明确涨的是什么,少的是什么.
    17、(1)8;4;;(1)①线段AD的长为2;②点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,利用矩形的性质及勾股定理,可得出AB,BC,AC的长;
    (1)①设AD=a,则CD=a,BD=8-a,在Rt△BCD中,利用勾股定理可求出a的值,进而可得出线段AD的长;
    ②设点P的坐标为(0,t),利用两点间的距离公式可求出AD1,AP1,DP1的值,分AP=AD,AD=DP及AP=DP三种情况,可得出关于t的一元二次方程(或一元一次方程),解之即可得出t的值,进而可得出点P的坐标.
    【详解】
    解:(1)如图:
    当x=0时,y=-1x+8=8,
    ∴点C的坐标为(0,8);
    当y=0时,-1x+8=0,解得:x=4,
    ∴点A的坐标为(4,0).
    由已知可得:四边形OABC为矩形,
    ∴AB=OC=8,BC=OA=4,AC=.
    故答案为:8;4;.
    (1)①设AD=a,则CD=a,BD=8-a.
    在Rt△BCD中,CD1=BC1+BD1,即a1=3+(8-a)1,
    解得:a=2,
    ∴线段AD的长为2.
    ②存在,如图:
    设点P的坐标为(0,t).
    ∵点A的坐标为(4,0),点D的坐标为(4,2),
    ∴AD1=12,AP1=(0-4)1+(t-0)1=t1+16,DP1=(0-4)1+(t-2)1=t1-10t+3.
    当AP=AD时,t1+16=12,
    解得:t=±3,
    ∴点P的坐标为(0,3)或(0,-3);
    当AD=DP时,12=t1-10t+3,
    解得:t1=1,t1=8,
    ∴点P的坐标为(0,1)或(0,8);
    当AP=DP时,t1+16=t1-10t+3,
    解得:t=,
    ∴点P的坐标为(0,).
    综上所述:在y轴上存在点P,使得△APD为等腰三角形,点P的坐标为(0,3)或(0,-3)或(0,1)或(0,8)或(0,).
    本题考查了一次函数图象上点的坐标特征、矩形的性质、勾股定理、等腰三角形的性质、两点间的距离以及解一元二次方程(或解一元一次方程),解题的关键是:(1)利用一次函数图象上点的坐标特征求出点A,C的坐标;(1)①通过解直角三角形,求出AD的长;②分AP=AD,AD=DP及AP=DP三种情况,找出关于t的一元二次方程(或一元一次方程).
    18、(1);(2)①2x,x;②S(0<x≤).
    【解析】
    (1)根据勾股定理可得AC=,进而根据正方形对角线相等而且互相平分,可得AM的长;
    (2)由中点定义可得AP=2PQ,AQ=PQ,然后由正方形与△ABD公共部分可得是以QM为高的等腰直角三角形,据此即可解答.
    【详解】
    解:(1)∵正方形ABCD的边长为4,
    ∴对角线AC4,
    又∴AM2.
    故答案为:2.
    (2)①Q是AP的中点,设PQ=x,
    ∴AP=2PQ=2x,AQ=x.
    故答案为:2x;x.
    ②如图:
    ∵以PQ为对角线作正方形,
    ∴∠GQM=∠FQM=45°
    ∵正方形ABCD对角线AC、BD交于点M,
    ∴∠FMQ=∠GMQ=90°,
    ∴△FMQ和△GMQ均为等腰直角三角形,
    ∴FM=QM=MG.
    ∵QM=AM﹣AQ=2x,
    ∴SFG•QM,
    ∴S,
    ∵依题意得:,
    ∴0<x≤2,
    综上所述:S(0<x≤2),
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.
    【详解】
    解:连接DC,
    ∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,
    ∴DC=DA,
    ∴∠ACD=∠A=30°,∠BCD=30°,

    ∵∠BCD=30°,

    ∴DE=1,
    故答案为1.
    本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.
    20、−12
    【解析】
    先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.
    【详解】
    设菱形的两条对角线相交于点D,如图,
    ∵四边形ABCD为菱形,
    又∵菱形的两条对角线的长分别是8和6,
    ∴OB⊥AC,BD=OD=3,CD=AD=4,
    ∵菱形ABCD的对角线OB在y轴上,
    ∴AC∥x轴,
    ∴C(−4,3),
    ∵点C在反比例函数y=的图象上,
    ∴3=,解得k=−12.
    故答案为:−12.
    本题考查反比例函数和菱形的性质,解题的关键是掌握菱形的性质.
    21、3;
    【解析】
    先利用勾股定理求出BC的长,然后再根据中位线定理求出EF即可.
    【详解】
    ∵直角三角形ABC中,∠C=90°,AB=10,AC=8,
    ∴BC==6,
    ∵点E、F分别为AB、AC的中点,
    ∴EF是△ABC的中位线,
    ∴EF=BC=×6=3,
    故答案为3.
    本题考查了勾股定理,三角形中位线定理,熟练掌握这两个定理的内容是解本题的关键.
    22、
    【解析】
    连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.
    【详解】
    解:连接AE,
    ∵DE为AB的垂直平分线,
    ∴AE=BE,
    ∵在△ABC中,∠ACB=90°,AC=3,AB=5,
    由勾股定理得BC=4,
    设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
    由勾股定理得:x2+32=(4-x)2,
    解得:x=,
    故答案为:.
    本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.
    23、
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.
    【详解】
    解:要使在实数范围内有意义,必须.
    二、解答题(本大题共3个小题,共30分)
    24、(1)①22.5°;②证明见解析;(2)或.
    【解析】
    (1)①先求得∠ABE的度数,然后依据等腰三角形的性质和三角形内角和定理求得∠BAE的度数,然后可求得∠DAE度数;
    ②先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;
    (2)当点F在BC上时,过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;当点F在CB的延长线上时,先根据题意画出图形,然后再证明EF=EC,然后再按照上述思路进行解答即可.
    【详解】
    (1)①∵ABCD为正方形,∴∠ABE=45°,
    又∵AB=BE,∴∠BAE(180°﹣45°)=67.5°,
    ∴∠DAE=90°﹣67.5°=22.5°;
    ②∵正方形ABCD关于BD对称,
    ∴△ABE≌△CBE,∴∠BAE=∠BCE,
    又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF;
    (2)如图1,过点E作MN⊥BC,垂直为N,交AD于M,
    ∵CE=EF,∴N是CF的中点,
    ∵BC=2BF,∴,
    又∵四边形CDMN是矩形,△DME为等腰直角三角形,
    ∴CN=DM=ME,
    ∴EDDMCN;
    如图2,过点E作MN⊥BC,垂直为N,交AD于M,
    ∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE,
    又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,
    ∴∠BCE=∠EFC,∴CE=EF,∴FN=CN,
    又∵BC=2BF,∴FC=3,∴CN,∴EN=BN,∴DE,
    综上所述:ED的长为或.
    本题考查了正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,正确添加辅助线并灵活运用相关知识是解本题的关键.
    25、 (1)见解析;(2) k=±;(1) k=4;(4) k>1.
    【解析】
    【分析】(1) 将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;
    (4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.
    【详解】解:(1)∵一次函数的图像经过原点,
    ∴点(0,0)在一次函数的图像上,
    将点(0,0)代入解析式得:0=-2k2+18,
    解得:k=±1.
    又∵y=(1-k)x-2k2+18是一次函数,
    ∴1-k≠0,
    ∴k≠1.
    ∴k=-1.
    (2)∵图像经过点(0,-2),
    ∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,
    解得:k=±.
    (1)∵图像平行于直线y=-x,
    ∴两个函数的一次项系数相等,即1-k=-1.
    解得k=4.
    (4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,
    即1-k<0,
    解得k>1.
    【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.
    26、(1)四边形为菱形,见解析;(2)
    【解析】
    (1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
    (2)根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    解: 四边形为菱形;
    理由如下:
    四边形为矩形,
    四边形为平行四边形
    由折叠的性质,则
    四边形为菱形,

    .
    由得
    设.
    在,
    解得:,

    .
    此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    题号





    总分
    得分
    相关试卷

    北京大附属中学2024年数学九上开学调研模拟试题【含答案】: 这是一份北京大附属中学2024年数学九上开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广东省广州市广州大附属中学九上数学开学检测模拟试题【含答案】: 这是一份2024年广东省广州市广州大附属中学九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建师范大第二附属中学数学九上开学复习检测试题【含答案】: 这是一份2024-2025学年福建师范大第二附属中学数学九上开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map