终身会员
搜索
    上传资料 赚现金

    北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】

    立即下载
    加入资料篮
    北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】第1页
    北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】第2页
    北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】

    展开

    这是一份北京市中学国人民大附属中学2024年数学九年级第一学期开学经典模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
    A.B.C.D.
    2、(4分)在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
    A.众数是90B.中位数是90C.平均数是90D.极差是15
    3、(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )
    A.B.C.D.
    4、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是( )
    A.k≥﹣1且k≠0B.k≥﹣1C.k≤1D.k≤1且k≠0
    5、(4分)下列说法:
    ①对角线互相垂直的四边形是菱形;
    ②矩形的对角线垂直且互相平分;
    ③对角线相等的四边形是矩形;
    ④对角线相等的菱形是正方形;
    ⑤邻边相等的矩形是正方形.其中正确的是( )
    A.个B.个C.个D.个
    6、(4分)将抛物线 y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度后,得到的抛物线的解析式为( )
    A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3
    C.y=(x+2)2+3D.y=(x+2)2﹣3
    7、(4分)正多边形的内角和为540°,则该多边形的每个外角的度数为( )
    A.36°B.72°C.108°D.360°
    8、(4分)下列二次根式能与合并为一项的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______
    10、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
    11、(4分)如图,正方形ABCD的面积为1,则以相邻两边中点的连线EF为边的正方形EFGH的周长为________.
    12、(4分)如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为16,则▱ABCD的两条对角线的和是______
    13、(4分)函数的自变量x的取值范围是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,反比例函数 y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(n,-1).
    (1)求反比例函数与一次函数的函数关系式;
    (2)根据图象,直接回答:当x取何值时,一次函数的值大于反比例函数的值;
    (3)连接AO、BO,求△ABO的面积;
    (4)在y轴上存在点P,使△AOP为等腰三角形,请直接写出点P的坐标.
    15、(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,
    (1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标 .
    (2)线段BC的长为 ,菱形ABCD的面积等于
    16、(8分)如图,在▱ABCD中,E是BC延长线上的一点,且DE=AB,连接AE、BD,证明AE=BD.
    17、(10分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
    (1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
    (2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
    (3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
    18、(10分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (Ⅰ)图1中a的值为 ;
    (Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
    (Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.
    20、(4分)数据101,98,102,100,99的方差是______.
    21、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.
    22、(4分)如图,在中,,垂足为,是中线,将沿直线BD翻折后,点C落在点E,那么AE为_________.
    23、(4分)如图,在菱形ABCD 中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)如图,已知矩形中,点是边上的一动点(不与点、重合),过点作于点,于点,于点,猜想线段三者之间具有怎样的数量关系,并证明你的猜想;
    (2)如图,若点在矩形的边的延长线上,过点作于点,交的延长线于点,于点,则线段三者之间具有怎样的数量关系,直接写出你的结论;
    (3)如图,是正方形的对角线,在上,且,连接,点是上任一点,与点,于点,猜想线段之间具有怎样的数量关系,直接写出你的猜想.
    25、(10分)某校开展“爱我汕头,创文同行”的活动,倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:
    (1)抽查的学生劳动时间为1.5小时”的人数为 人,并将条形统计图补充完整.
    (2)抽查的学生劳动时间的众数为 小时,中位数为 小时.
    (3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?
    26、(12分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
    (1)求点D的坐标.
    (2)求直线BC的解析式.
    (3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据等腰三角形的性质得到根据垂直的性质得到
    根据等量代换得到又即可得到
    根据同角的余角相等即可得到.
    【详解】
    ,

    ,

    从而
    是等腰三角形,



    故选:B.
    考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
    2、C
    【解析】
    由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
    【详解】
    解:∵90出现了5次,出现的次数最多,∴众数是90;
    ∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
    ∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
    极差是:95﹣80=1.
    ∴错误的是C.故选C.
    3、A
    【解析】
    由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.
    4、A
    【解析】
    根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.
    【详解】
    根据题意得k≠1且△=22-4k×(-1)≥1,
    解得k≥-1且k≠1.
    故选A.
    本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    5、B
    【解析】
    利用正方形的判定和性质,菱形的判定和性质,矩形的判定和性质进行依次判断可求解.
    【详解】
    解:①对角线互相垂直的四边形不一定是菱形,故①错误;
    ②矩形的对角线相等且互相平分,故②错误;
    ③对角线相等的四边形不一定是矩形,故③错误;
    ④对角线相等的菱形是正方形,故④正确,
    ⑤邻边相等的矩形是正方形,故⑤正确
    故选B.
    本题考查了正方形的判定和性质,菱形的判定和性质,矩形的判定和性质,灵活运用这些性质和判定解决问题是本题的关键.
    6、A
    【解析】
    直接根据平移规律,即可得到答案.
    【详解】
    解:将抛物线y=x2向右平移 2 个单位长度,再向上平移 3 个单位长度,
    得:y=(x﹣2)2+3;
    故选项:A.
    此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.
    7、B
    【解析】
    先根据内角和的度数求出正多边形的边数,再根据外角和度数进行求解.
    【详解】
    设这个正多边形的边数为x,
    则(x-2)×180°=540°,解得x=5,
    所以每个外角的度数为360°÷5=72°,
    故选B.
    此题主要考查多边形的内角和公式,解题的关键是熟知多边形的内角和与外角和公式.
    8、A
    【解析】
    先根据二次根式的性质把化为最简二次根式,然后再逐项判断找出其同类二次根式即可.
    【详解】
    解:.
    A、与是同类二次根式,能合并为一项,所以本选项符合题意;
    B、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
    C、与不是同类二次根式,不能合并为一项,所以本选项不符合题意;
    D、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意.
    故选:A.
    本题考查了二次根式的性质和同类二次根式的定义,属于基本知识题型,熟知同类二次根式的定义、熟练掌握二次根式的性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    根据题意找出图形的变化规律,根据规律计算即可.
    【详解】
    解:图1挖去中间的1个小三角形,
    图2挖去中间的(1+3)个小三角形,
    图3挖去中间的(1+3+32)个小三角形,

    则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,
    故答案为1.
    本题考查的是图形的变化,掌握图形的变化规律是解题的关键.
    10、-1<x<1.
    【解析】
    先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
    【详解】
    解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
    ∴﹣4=﹣n﹣1,解得n=1,
    ∴P(1,﹣4),
    又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
    ∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
    故答案为﹣1<x<1.
    本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
    11、2
    【解析】
    由正方形的性质和已知条件得出BC=CD==1,∠BCD=90°,CE=CF=,得出△CEF是等腰直角三角形,由等腰直角三角形的性质得出EF的长,即可得出正方形EFGH的周长.
    【详解】
    解:∵正方形ABCD的面积为1,
    ∴BC=CD==1,∠BCD=90°,
    ∵E、F分别是BC、CD的中点,
    ∴CE=BC=,CF=CD=,
    ∴CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴EF=CE=,
    ∴正方形EFGH的周长=4EF=4×=2 ;
    故答案为2.
    本题考查正方形的性质、等腰直角三角形的判定与性质;熟练掌握正方形的性质,由等腰直角三角形的性质求出EF的长是解题关键.
    12、1
    【解析】
    根据平行四边形对角线互相平分,对边相等可得CD=AB=5,AC=2CO,BD=2DO,再由△OCD的周长为16可得CO+DO=16﹣5=11,然后可得答案.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴CD=AB=5,AC=2CO,BD=2DO,
    ∵△OCD的周长为16,
    ∴CO+DO=16﹣5=11,
    ∴AC+BD=2×11=1,
    故答案为1.
    此题主要考查了平行四边形的性质,关键是掌握平行四边形对角线互相平分,对边相等.
    13、x≠1
    【解析】
    根据分母不等于2列式计算即可得解.
    【详解】
    由题意得,x-1≠2,
    解得x≠1.
    故答案为x≠1.
    本题考查的知识点为:分式有意义,分母不为2.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    【解析】
    (1)利用待定系数法求得一次函数与反比例函数的解析式;
    (2)根据图象,当自变量取相同的值时,函数图象对应的点在上边的函数值大,据此即可确定;
    (1)设一次函数交y轴于D,根据S△ABO=S△DBO+S△DAO即可求解;
    (3)求得OA的长度,分O是顶角的顶点,和A是顶角顶点,以及OA是底边三种情况进行讨论即可求解.
    【详解】
    解:(1)∵A(1,1)在反比例函数图象上,∴k=1,
    ∵B(n,-1)在y=的图象上,
    ∴n=-1.
    ∵A(1,1),B(-1,-1)在一次函数y=mx+b图象上,
    ∴,
    解得m=1,b=2.
    ∴两函数关系式分别是:y=和y=x+2.
    (2)由图象得:当-1<x<0或x>1时,一次函数的值大于反比例函数的值;
    (1)设一次函数y=x+2交y轴于D,则D(0,2),则OD=2,
    ∵A(1,1),B(-1,-1)
    ∴S△DBO=×1×2=1,S△DAO=×1×2=1
    ∴S△ABO=S△DBO+S△DAO=3.
    (3)OA= = ,
    O是△AOP顶角的顶点时,OP=OA,则P(0,- )或P(0,),
    A是△AOP顶角的顶点时,由图象得, P(0,6),
    OA是底边,P是△AOP顶角的顶点时,
    设 P(0,x),分别过A、P作AN⊥x轴于N,PM⊥AN于M,
    则AP=OP=x,PM=1,AM=1-x,
    在Rt△APM中, 即
    解得x= ,
    ∴P(0,).
    故答案为:(1)y=,y=x+2;(2)-1<x<0或x>1;(1)3;(3)P(0,- )或P(0,)或P(0,6)或P(0,).
    本题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同时在求解面积时,要巧妙地利用分割法,将面积分解为两部分之和.
    15、(1)见解析,(-2,1)(2) ,15
    【解析】
    【分析】(1)用平移的方法画出图形,根据图形写出点D的坐标(-2,1);根据勾股定理求出BC=;(2)根据勾股定理,求出菱形对角线长度,利用菱形对角线可求出菱形面积.即:S菱形ABCD=AC×BD=15.
    【详解】解:(1)如图,
    D(-2,1) BC==;
    (2)连接AC、BD.
    由勾股定理得:AC,
    BD,
    所以S菱形ABCD=AC×BD=15 .
    【点睛】此题考核知识点:平移变换;勾股定理;菱形面积计算.解题的关键:根据勾股定理求出菱形对角线长度,再利用菱形对角线可求出菱形面积.
    16、见解析
    【解析】
    首先根据平行四边形的性质可得AB=CD,AB∥CD,再根据等腰三角形的性质可得∠DCE=∠DEC,即可证明△ABE≌△DEB,再根据全等三角形性质可得到结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥DC,AB=DC,
    ∵DE=AB,
    ∴DE=DC.
    ∴∠DCE=∠DEC,
    ∵AB∥DC,
    ∴∠ABC=∠DCE.
    ∴∠ABC=∠DEC.
    在△ABE与△DEB中

    ∴△ABE≌△DEB(SAS).
    ∴AE=BD.
    本题考查了平行四边形的性质,全等三角形的判定和性质,以及等腰三角形的性质,解题的关键是根据图中角的关系,找出证明全等的条件.
    17、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
    【解析】
    (1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
    (3)利用勾股定理的逆定理进行判断.
    【详解】
    解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
    (2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
    (3)∵C1B12=5,C1B22=5,B1B22=10,
    ∴C1B12+C1B22=B1B22,C1B1=C1B2,
    ∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
    故答案为等腰直角三角形.
    此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
    18、 (1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.1;(3)初赛成绩为1.65 m的运动员能进入复赛.
    【解析】
    试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.
    试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a的值是25;
    (2)、观察条形统计图得:=1.61;
    ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65;
    将这组数据从小到大排列为,其中处于中间的两个数都是1.1, 则这组数据的中位数是1.1.
    (3)、能; ∵共有20个人,中位数是第10、11个数的平均数,
    ∴根据中位数可以判断出能否进入前9名;
    ∵1.65m>1.1m, ∴能进入复赛
    考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由方程有两个不相等的实数根,可得△>0,建立关于a的不等式,解不等式求出a的取值范围即可.
    【详解】
    ∵关于的一元二次方程有两个不相等的实数根,
    ∴△=16+4a>0,
    解得,.
    故答案为:a>-4.
    本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    20、1
    【解析】
    先求平均数,再根据方差公式求方差.
    【详解】
    平均数 .x=(98+99+100+101+101)=100,
    方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
    故答案为1
    本题考核知识点:方差. 解题关键点:熟记方差公式.
    21、m<
    【解析】
    根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.
    【详解】
    解:∵一元二次方程有两个不相等的实数根,
    ∴△=(-3)2−4m>0,
    ∴m<,
    故答案为:m<.
    本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.
    22、
    【解析】
    如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形,先证明△ADM≌△CDB,在RT△BMN中利用勾股定理求出BM,再证明四边形BCDE是菱形,AE=2OD,即可解决问题.
    【详解】
    解:如图作AH⊥BC于H,AM⊥AH交BD的延长线于M,BN⊥MA于N,则四边形ANBH是矩形.
    ∵AB=AC=4,,
    ∴CH=1,AH=NB=
    ,BC=2,
    ∵AM∥BC,
    ∴∠M=∠DBC,
    在△ADM和△CDB中,

    ∴△ADM≌△CDB(AAS),
    ∴AM=BC=2,DM=BD,
    在RT△BMN中,∵BN=,MN=3,
    ∴,
    ∴BD=DM=,
    ∵BC=CD=BE=DE=2,
    ∴四边形EBCD是菱形,
    ∴EC⊥BD,BO=OD=,EO=OC,
    ∵AD=DC,
    ∴AE∥OD,AE=2OD=.
    故答案为.
    本题考查翻折变换、全等三角形的判定和性质、菱形的判定和性质、三角形的中位线定理、勾股定理等知识,解题的关键是添加辅助线构造全等三角形,学会转化的数学数学,利用三角形中位线发现AE=2OD,求出OD即可解决问题,属于中考常考题型.
    23、1
    【解析】
    根据菱形的性质可得AC⊥BD,AB=BC=CD=AD,再根据直角三角形的性质可得AB=2OP,进而得到AB长,然后可算出菱形ABCD的周长.
    【详解】
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AB=BC=CD=AD,
    ∵点P是AB的中点,
    ∴AB=2OP,
    ∵PO=2,
    ∴AB=4,
    ∴菱形ABCD的周长是:4×4=1,
    故答案为:1.
    此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直,四边相等,此题难度不大.
    二、解答题(本大题共3个小题,共30分)
    24、(1),见解析;(2)或者,见解析;(3).
    【解析】
    (1)过点作于,先得出四边形是矩形,再证明四边形是矩形,证明,求出即可;
    (2)过C点作CO垂直EF,可得矩形HCOF,因为HC=FO,只要证明EO=EG,最后根据AAS证明.
    (3)连接AC交BD于O,过点E作EH⊥AC,证明矩形FOHE,证明EG=CH,根据AAS证明.
    【详解】
    (1)答:
    证明:如图1,过点作于.

    四边形是矩形.


    四边形是矩形,
    ,且互相平分
    ∴∠DBC=∠ACB



    又,

    ∴EG=CN

    即;
    (2)或者;
    过C点作CO垂直EF,
    ∵,CO⊥EF,
    ∴矩形COHF
    ∴CE∥BD,CH=DO
    ∴∠DBC=∠OCE
    ∵矩形ABCD
    ∴∠DBC=∠ACB
    ∵∠ECG=∠ACB
    ∴∠ECG=∠OCE
    ∵CO⊥EF,
    ∴∠G=∠COE
    ∵CE=CE

    ∴EO=EG
    ∴或者;
    (3).
    连接AC交BD于O,过点E作EH⊥AC,
    ∵正方形ABCD
    ∴FO⊥AC,
    ∵EH⊥AC
    ∴矩形FEOH,∠EHC=90°
    ∵EG⊥BC,EF=OH
    ∴∠EGC=90°=∠EHC
    ∴EH∥BD
    ∴∠HEC=∠FLE
    ∵BL=BC
    ∴∠GCE=∠FLE
    ∴∠GCE=∠HEC
    ∵EC=EC

    ∴HC=GE

    本题考查的是矩形的综合运用,熟练掌握全等三角形是解题的关键.
    25、(1)40,补图见解析;(2)1.5、1.5;(3)估算该校学生参加义务劳动1小时的有400人.
    【解析】
    (1)根据统计图,先求出总数,再算出劳动时间为1.5小时的人数;(2)根据中位数和众数的定义分析即可;(3)用样本估计总体.
    【详解】
    (1)40
    (2)1.5,1.5
    (3)1200×30%=400,
    答:估算该校学生参加义务劳动1小时的有400人。
    本题考核知识点:数据的描述. 解题关键点:理解统计的基本定义,从统计图获取信息.
    26、(1)D(4,7)(2)y=(3)详见解析
    【解析】
    试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
    (2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
    (3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
    试题解析:(1)x2﹣7x+12=0,
    解得x1=3,x2=4,
    ∵OA>OB,
    ∴OA=4,OB=3,
    过D作DE⊥y于点E,
    ∵正方形ABCD,
    ∴AD=AB,∠DAB=90°,
    ∠DAE+∠OAB=90°,
    ∠ABO+∠OAB=90°,
    ∴∠ABO=∠DAE,
    ∵DE⊥AE,
    ∴∠AED=90°=∠AOB,
    ∵DE⊥AE
    ∴∠AED=90°=∠AOB,
    ∴△DAE≌△ABO(AAS),
    ∴DE=OA=4,AE=OB=3,
    ∴OE=7,
    ∴D(4,7);
    (2)过点C作CM⊥x轴于点M,
    同上可证得△BCM≌△ABO,
    ∴CM=OB=3,BM=OA=4,
    ∴OM=7,
    ∴C(7,3),
    设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
    代入B(3,0),C(7,3)得,,
    解得,
    ∴y=x﹣;
    (3)存在.
    点P与点B重合时,P1(3,0),
    点P与点B关于点C对称时,P2(11,6).
    考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
    题号





    总分
    得分

    相关试卷

    北京中学国人民大附属中学2024年数学九年级第一学期开学监测试题【含答案】:

    这是一份北京中学国人民大附属中学2024年数学九年级第一学期开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市师范大附属中学2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份北京市师范大附属中学2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    北京市人民大附属中学2024年九上数学开学检测试题【含答案】:

    这是一份北京市人民大附属中学2024年九上数学开学检测试题【含答案】,共25页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map