成都市金堂县金龙中学2024年数学九年级第一学期开学考试模拟试题【含答案】
展开这是一份成都市金堂县金龙中学2024年数学九年级第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,□ABCD的对角线相交于点O,下列式子不一定正确的是( )
A.AC=BDB.AB=CDC.∠BAD=∠BCDD.AO=CO
2、(4分)如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为( )
A.3B.4C.5D.6
3、(4分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF 的面积为其中一定成立的有( )个.
A.1B.2C.3D.4
4、(4分)点P(2,-3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)下列各式计算正确的是( )
A.B.C.D.
6、(4分)直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是( )
A.10B.8C.6D.5
7、(4分)如图,在周长为 18cm 的▱ABCD 中,AC、BD 相交于点 O,OE⊥BD 交 AD 于 E,则△ABE的周长为( )
A.6cmB.7cm
C.8cmD.9cm
8、(4分)如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE+DC=DE
其中正确的个数是( )
A.1B.2C.0D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
10、(4分)小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.
11、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________
12、(4分)如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
13、(4分)如图,在菱形中,点为上一点,,连接.若,则的度数为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某班级准备购买一些奖品奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知,购买一个甲奖品比一个乙奖品多用20元,若用400元购买甲奖品的个数是用160元购买乙奖品个数的一半.
(1)求购买一个甲奖品和一个乙奖品各需多少元?
(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙奖品的个数是甲奖品的2倍还多8个,且该班级购买两种奖项的总费用不超过640元,那么该班级最多可购买多少个甲奖品?
15、(8分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.
(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=1.求DE的长.
16、(8分)正方形ABCD中,E是BC上一点,F是CD延长线上一点,,连接AE,AF,EF,G为EF中点,连接AG,DG.
(1)如图1:若,,求DG;
(2)如图2:延长GD至M,使,过M作MN∥FD交AF的延长线于N,连接NG,若.求证:.
17、(10分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图①,当时,求的值;
(2)如图②当DE平分∠CDB时,求证:AF=OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
18、(10分)列方程解题:据专家预测今年受厄尔尼诺现象影响,我国大部分地区可能遇到洪涝灾害.进入防汛期前,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
“你们是用9天完成4800米长的大坝加固任务的”?
“我们加固600米后采用新的加固模式,这样每天加固长度是原来的2倍”,
通过这段对话请你求出该地驻军原来每天加固的米数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,把一张长方形的纸沿对角线BD折叠后,顶点A落在A′处,已知∠CDA′=28°,则∠CBD=______________.
20、(4分)计算:(-2019)0×5-2=________.
21、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
22、(4分)因式分解:x2﹣x=______.
23、(4分)分式,,的最简公分母__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)本次调查的学生人数为__________,娱乐节目在扇形统计图中所占圆心角的度数是__________度.
(2)请将条形统计图补充完整:
(3)若该中学有2000名学生,请估计该校喜爱动画节目的人数.
25、(10分)如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.
(1)求证:△ABF≌△DEF;
(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.
26、(12分)解分式方程:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质逐项判断即可得.
【详解】
A、平行四边形的对角线不一定相等,则不一定正确,此项符合题意
B、平行四边形的两组对边分别相等,则一定正确,此项不符题意
C、平行四边形的两组对角分别相等,则一定正确,此项不符题意
D、平行四边形的两对角线互相平分,则一定正确,此项不符题意
故选:A.
本题考查了平行四边形的性质,熟记平行四边形的性质是解题关键.
2、A
【解析】
过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.
【详解】
解:如图,过点P作PD⊥OB于D,
∵点P是∠AOB的角平分线上一点,PC⊥OA,
∴PC=PD=1,即点P到OB的距离等于1.
故选:A.
本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.
3、C
【解析】
根据菱形的性质,逐个证明即可.
【详解】
① 四边形ABCD为菱形
AB=BC
∠DAB=60°
△ABF≌△CBF
因此 ①正确.
②过E作EM垂直于AB的延长线于点M
CE=2
BE=4
∠DAB=60°
因此点E到AB的距高为
故②正确.
③根据①证明可得△ABF≌△CBF
AF=CF
故③正确.
④ 和 的高相等
所以
△ABF≌△CBF
故④错误.
故有3个正确,选C.
本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.
4、D
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(2,-3)在第四象限.
故选:D.
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5、C
【解析】
原式各项利用二次根式的化简公式计算得到结果,即可做出判断.
【详解】
(A)=2,是4的算术平方根,为正2,故A错;
(B)由平方差公式,可得:=3,正确。
(C)=2,故错;
(D)、没有意义,故错;
选C。
此题考查算术平方根,解题关键在于掌握运算法则
6、D
【解析】
如图,根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=AB即可.
【详解】
解:如图,
∵∠ACB=90°,AC=6,BC=8,由勾股定理得:
AB==10,
∵CD是△ABC中线,
∴CD=AB=×10=5,
故选D.
本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=AB是解此题的关键.
7、D
【解析】
利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.
【详解】
∵▱ABCD的对角线AC,BD相交于点O,
∴O为BD的中点,
∵OE⊥BD,
∴BE=DE,
∴△ABE的周长=AB+AE+BE=AB+AD=×18=9(cm),
故答案为:D
本题考查的是平行四边形的性质及线段垂直平分线的性质,解答此题的关键是将三角形的三边长转为平行四边形的一组邻边的长.
8、D
【解析】
①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C=90°知∠ABC+∠FBA=90°,即可判断①;
②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;
③由BF=DC、EF=DE,根据BE+BF>EF可判断③;
④根据BE+BF=EF可判断④.
【详解】
∵△ADC绕点A顺时针旋转90°后,得到△AFB,
∴△ADC≌△AFB,
∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,
又∵∠ABC+∠C=90°,
∴∠ABC+∠FBA=90°,即∠FBC=90°,
∴BF⊥BC,故①正确;
∵∠BAC=90°,∠DAE=45°,
∴∠BAE+∠CAD=∠DAE=45°,
∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,
在△AED和△AEF中,
∵ ,
∴△AED≌△AEF,故②正确;
∵BF=DC,
∴BE+DC=BE+BF,
∵△AED≌△AEF,
∴EF=DE,
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,故③错误,
∵∠FBC=90°,
∴BE+BF=EF,
∵BF=DC、EF=DE,
∴BE+DC=DE,④正确;
故选:D.
此题考查勾股定理,旋转的性质,全等三角形的判定,解题关键在于掌握各性质定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b<0,
∴直线y=bx+k经过第一、二、四象限,
∴直线y=bx+k不经过第三象限.
故答案为:第三象限.
点睛:熟知:“直线y=kx+b在平面直角坐标系中所经过的象限与k、b的值的关系”是解答本题的关键.
10、30
【解析】
根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.
【详解】
解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],
∴平均数为3,共10个数据,
∴x1+x2+x3+…+x10=10×3=30.
故答案为30.
本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.
11、(2,0)
【解析】
根据x轴上点的坐标特点解答即可.
【详解】
解:∵点P(m+3,m+1)在直角坐标系的x轴上,
∴点P的纵坐标是0,
∴m+1=0,解得,m=-1,
∴m+3=2,则点P的坐标是(2,0).
故答案为(2,0).
12、1.
【解析】
∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
13、18
【解析】
由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AD=CD,∠A=∠BCD,CD∥AB,
∵DE=AD,∠ADE=36°,
∴∠DAE=∠DEA=72°,
∵CD∥AB,
∴∠CDE=∠DEA=72°,且DE=DC=DA,
∴∠DCE=54°,
∵∠DCB=∠DAE=72°,
∴∠BCE=∠DCB-∠DCE=18°.
故答案为:18.
本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)购买一个甲奖品需元,买一个乙奖品需要元;(2)该班级最多可购买个甲奖品.
【解析】
(1)设买一个乙奖品需要x元,购买一个甲奖品需元,根据题意用400元购买甲奖品的个数是用160元购买乙奖品个数的一半,列出分式方程,然后求解即可;
(2)设该班级可购买a个甲奖品,根据题意列出一元一次不等式,然后求解即可.
【详解】
解:设买一个乙奖品需要元,购买一个甲奖品需元,
由题意得:,
经检验是原方程的解,
则
答:购买一个甲奖品需元,买一个乙奖品需要元;
设该班级可购买个甲奖品,
根据题意得,
解得,
答:该班级最多可购买个甲奖品.
分式方程和一元一次不等式在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.
15、(1)、证明过程见解析;(2)、
【解析】
试题分析:(1)已知AD平分∠BAC,可得∠EAD=∠ADE,再由∠EAD=∠ADE,可得∠BAD=∠ADE,即可得AB∥DE,从而得△DCE∽△BCA;(2)已知∠EAD=∠ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=AC﹣AE=AC﹣DE=1﹣x,由(1)可知△DCE∽△BCA,根据相似三角形的对应边成比例可得x:3=(1﹣x):1,解得x的值,即可得DE的长.
试题解析:(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAC,
∵∠EAD=∠ADE,
∴∠BAD=∠ADE,
∴AB∥DE,
∴△DCE∽△BCA;
(2)解:∵∠EAD=∠ADE,
∴AE=DE,
设DE=x,
∴CE=AC﹣AE=AC﹣DE=1﹣x,
∵△DCE∽△BCA,
∴DE:AB=CE:AC,
即x:3=(1﹣x):1,
解得:x=,
∴DE的长是.
考点:相似三角形的判定与性质.
16、(1)DG=;(2),见解析.
【解析】
(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出,,,再由△AFE是等腰直角三角形,G是EF的中点,求出,证明△NGK≌△NGT(HL),则有TN=NK=MN+MK,∠ANG=30°,可求,得到=MN+NA.
【详解】
解:(1)取CF的中点H,连接GH,
∵BE=DF,AB=AD,∠ADF=∠B=90°,
∴△ABE≌△ADF(SAS),
∴AF=AE,
∵AB=3,BE=1,
∴AF=AE= ,CF=4,CE=2,
∴EF=2,
∴△AEF是等腰直角三角形,
∵G为EF中点,CF的中点H,
∴GH是Rt△EFC的中位线,
∴GH=CE=1,
∴FH=2,
∴DH=1,
∴DG=;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,
过点G作GT⊥AF,交AF于点T;
设BE=a,
在Rt△ABE中,∠BAE=30°,
∴AB=a,AE=2a,
∴CE=(-1)a,
∵DF=BE,
∴CF=(+1)a,
∵△AFE是等腰直角三角形,G是EF的中点,
∴AG=a,
∵G是EF中点,GQ⊥CF,
∴GQ=CE=a,
∴DQ=CD-CF=a,
∴GQ=DQ,
∴∠DGQ=45°,
∴GK=MK,
∴GM=GA,
∴GK=MK=a,
∵∠FAG=45°,
∴GT=a,
∴Rt△NGK≌Rt△NGT(HL),
∴TN=NK=MN+MK,
∠ANG=∠ANK,
∵∠BAE=30°,
∴∠NAD=30°,
∴∠ANK=60°,
∴∠ANG=30°,
,
,
,
,
即.
本题考查正方形的性质,三角形的性质;熟练掌握正方形的性质,三角形全等的判定定理和性质定理,特殊三角形的性质是解题的关键.
17、(1);(2)(3)见解析
【解析】
试题分析:(1)利用相似三角形的性质求得与的比值,依据和同高,则面积的比就是与的比值,据此即可求解;
(2)利用三角形的外角和定理证得 可以证得,在直角中,利用勾股定理可以证得;
(3)连接 易证是的中位线,然后根据是等腰直角三角形,易证 利用相似三角形的对应边的比相等即可.
试题解析:(1)∵,∴
∵四边形ABCD是正方形,
∴△CEF∽△ADF,∴,∴,∴;
(2)证明:∵DE平分∠CDB,
∴∠ODF=∠CDF,
∵AC、BD是正方形ABCD的对角线.
而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,
∴∠ADF=∠AFD,
∴AD=AF,
在中,根据勾股定理得:
AD==OA,
(3)证明:连接OE.
∵点O是正方形ABCD的对角线AC、BD的交点,
点O是BD的中点.
又∵点E是BC的中点,
∴OE是△BCD的中位线,
∴=,∴.
.在 中,∵∠GCF=45°.∴CG=GF,
又∵CD=BC,∴,
∴=.
∴CG=BG.
18、该建筑队原来每天加固300米.
【解析】
设原来每天加固x米,则采用新的加固技术后每天加固2x米,然后依据共用9天完成任务进行解答即可.
【详解】
解:设原来每天加固x米,则采用新的加固技术后每天加固2x米.
根据题意得:
解得:x=300,
经检验x=300是分式方程的解.
答:该建筑队原来每天加固300米.
本题主要考查的是分式方程的应用,找出题目的等量关系是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、31°
【解析】
根据折叠的性质可得:∠BDA=∠BDA'=(90°-28°),则利用平行线的性质可求∠CBD=∠BDA.
【详解】
解:由折叠性质可知:
∠BDA=∠BDA'=(90°-28°)=31°
又∵矩形ABCD中,AD∥BC
∴∠CBD=∠BDA=31°
故答案为:31°.
本题考查了折叠及矩形的性质,理解折叠中出现的相等的角是关键.
20、
【解析】
根据零指数幂的性质及负整数指数幂的性质即可解答.
【详解】
原式=1×.
故答案为:.
本题考查了零指数幂的性质及负整数指数幂的性质,熟练运用零指数幂的性质及负整数指数幂的性质是解决问题的关键.
21、1
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
180°-144°=36°,
360°÷36°=1,
∴这个多边形的边数是1,
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
22、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
23、
【解析】
确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
【详解】
分式,,的分母分别是x、3xy、6(x-y),故最简公分母是,
故答案为
.
此题考查最简公分母,难度不大
二、解答题(本大题共3个小题,共30分)
24、 (1) 300,72°;(2)详见解析;(3)600.
【解析】
(1)从条形统计图中可得到“A”人数为69人,从扇形统计图中可得此部分占调查人数的23%,可求出调查人数;娱乐节目所对应的圆心角的度数占360°的20%,(2)求出“B”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中喜欢动画节目的百分比,去估计总体所占的百分比,用总人数去乘这个百分比即可.
【详解】
解:(1)人,,
故答案为:300,72°.
(2)人,补全条形统计图如图所示;
(3)人,
答:该中学有2000名学生中,喜爱动画节目大约有600人.
考查条形统计图、扇形统计图的特点和制作方法,理解统计图中各个数据之间的关系是解决问题的关键,将两个统计图联系起来寻找数据之间的关系是常用的方法之一.
25、(1)证明见解析;(2)4
【解析】
(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABF=∠E,根据全等三角形的判定定理即可得到结论;
(2)根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABF=∠E,
∵点F恰好为边AD的中点,
∴AF=DF,
在△ABF与△DEF中,
,
∴△ABF≌△DEF;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=4,
∵∠AFB=∠FBC,
∵∠ABC的平分线与CD的延长线相交于点E,
∴∠ABF=∠FBC,
∴∠AFB=∠ABF,
∴AB=AF,
∵点F为AD边的中点,AG⊥BE.
∴BG=,
∴BE=2,
∵△ABF≌△EDF,
∴BE=2BF=4.
本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.
26、
【解析】
首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.
【详解】
解:方程两边乘以得:,
解这个方程得:,
检验:当时,,
是原方程的解;
原方程的解是:.
本题考查了分式方程的解法、一元一次方程方程的解法;熟练掌握分式方程的解法,方程两边乘以最简公分母,把分式方程化成整式方程是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年四川省成都市金堂县金龙中学中考数学模拟试卷【含解析】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年成都市金堂县金龙中学数学九年级第一学期期末预测试题含答案,共7页。试卷主要包含了若反比例函数的图象上有两点P1等内容,欢迎下载使用。
这是一份2023-2024学年成都市金堂县金龙中学八年级数学第一学期期末达标测试试题含答案,共7页。