大同市重点中学2025届九上数学开学考试模拟试题【含答案】
展开这是一份大同市重点中学2025届九上数学开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A.15°B.30°C.45°D.60°
2、(4分)美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉. 某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果 ,那么她选的高跟鞋的高度约为( )
A.B.C.D.
3、(4分)如图,将等边ABC向右平移得到DEF,其中点E与点C重合,连接BD,若AB=2,则线段BD的长为( )
A.2B.4C.D.2
4、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外锻炼占20%,期中考试成绩占40%,期末考试成绩占40%。小乐的三项成绩(百分制)依次为95,90,85,则小彤这学期的体育成绩为是( )
A.85B.89C.90D.95
5、(4分)每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为 ( )
A.元B.元C.元D.元
6、(4分)小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是( ).
A.B.C.D.
7、(4分)在□中,,则的度数为( )
A.B.C.D.
8、(4分)如图所示,购买一种苹果,所付款金额(单元:元)与购买量(单位:千克)之间的函数图像由线段和射线组成,则一次购买千克这种苹果,比分五次购买,每次购买千克这种苹果可节省( )
A.元B.元C.元D.元
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:a3﹣2a2+a=________.
10、(4分)如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD的最小值等于______.
11、(4分) “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.
12、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
13、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,等边△ABC的边长是2,D,E分别是AB,AC的中点,延长BC至点F,使CF=BC,连接CD,EF
(1)求证:CD=EF;
(2)求EF的长.
15、(8分)根据指令[s,α](s≥0,0°<α<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度α,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向.
(1)若给机器人下了一个指令[4,60°],则机器人应移动到点______;
(2)请你给机器人下一个指令_________,使其移动到点(-5,5).
16、(8分)
17、(10分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
18、(10分)如图,一艘轮船位于灯塔P南偏西60°方向的A处,它向东航行20海里到达灯塔P南偏西45°方向上的B处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔P的最短距离.(结果保留根号)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在函数y=中,自变量x的取值范围是_____.
20、(4分)如图,菱形的对角线交于点为边的中点,如果菱形的周长为,那么的长是__________.
21、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .
22、(4分)如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.
23、(4分)在平面直角坐标系中,将点向右平移3个单位所对应的点的坐标是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)随着教育教学改革的不断深入,应试教育向素质教育转轨的力度不断加大,体育中考已成为初中毕业升学考试的重要内容之一。为了解某市九年级学生中考体育成绩情况,现从中随机抽取部分考生的体育成绩进行调查,并将调查结果绘制如下图表:
根据上面提供的信息,回答下列问题:
(1)表中a和b所表示的数分别为a=______,b=______;并补全频数分布直方图;
(2)甲同学说“我的体育成绩是此次抽样调查所得数据的中位数。”请问:甲同学的体育成绩在______分数段内?
(3)如果把成绩在40分以上(含40分)定为优秀那么该市12000名九年级考生中考体育成绩为优秀的约有多少名?
25、(10分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.
(1)如图1,当E是线段AC的中点时,求证:BE=EF.
(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.
26、(12分)先化简,再求值:
(1),其中.
(2),并在2,3,4,5这四个数中取一个合适的数作为的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.
【详解】
∵等边三角形ABC中,AD⊥BC,
∴BD=CD,即:AD是BC的垂直平分线,
∵点E在AD上,
∴BE=CE,
∴∠EBC=∠ECB,
∵∠EBC=45°,
∴∠ECB=45°,
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠ACE=∠ACB-∠ECB=15°,
故选A.
此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.
2、C
【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可
【详解】
根据已知条件得下半身长是160×0.6=96cm
设选的高跟鞋的高度为xcm,
有
解得x≈7.5
经检验x≈7.5是原方程的解
故选C
本题考查分式方程的应用,能够读懂题意列出方程是本题关键
3、D
【解析】
过点D作DH⊥CF于H,由平移的性质可得△DEF是等边三角形,由等边三角形的性质可求CH=1,DH=,由勾股定理可求解.
【详解】
解:如图,过点D作DH⊥CF于H,
∵将等边△ABC向右平移得到△DEF,
∴△DEF是等边三角形,
∴DF=CF=2,∠DFC=60°,
∵DH⊥CF,
∴∠FDH=30°,CH=HF=1,
∴DH=HF=,BH=BC+CH=3,
∴BD===2,
故选:D.
本题主要考查勾股定理,平移的性质,等边三角形的性质,掌握这些性质是解题的关键.
4、B
【解析】
根据加权平均数的定义即可求解.
【详解】
由题意得小彤这学期的体育成绩为是20%×95+40%×90+40%×95=89,
故选B.
此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义.
5、B
【解析】
解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.
6、C
【解析】
根据在每段中,离家的距离随时间的变化情况即可进行判断.
【详解】
图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.
故选:C.
本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.
7、B
【解析】
依据平行四边形的性质可得∠B=∠D,通过已知∠B+∠D=216°,求出∠B=108°,再借助∠A=180°﹣∠B即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠B=∠D,∠A+∠B=180°.
∵∠B+∠D=216°,
∴∠B=108°.
∴∠A=180°﹣108°=72°.
故选:B.
本题考查平行四边形的性质,解题的关键是掌握平行四边形的对角相等,邻角互补.
8、B
【解析】
可由函数图像计算出2千克以内每千克的价钱,超出2千克后每千克的价钱,再分别计算出一次购买千克和分五次购买各自所付款金额.
【详解】
解:由图像可得2千克以内每千克的价钱为:(元),超出2千克后每千克的价钱为:(元),一次购买千克所付款金额为:(元),分五次购买所付款金额为:(元),可节省(元).
本题考查了函数的图像,正确从函数图像获取信息是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a(a﹣1)1
【解析】
试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.
考点:提公因式法与公式法的综合运用.
10、
【解析】
过点P作PE⊥AD交AD的延长线于点E,根据四边形ABCD是平行四边形,得到 AB∥CD,推出PE=PD,由此得到当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+ PD的最小值等于6.
【详解】
过点P作PE⊥AD交AD的延长线于点E,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EDC=∠DAB=30°,
∴PE=PD,
∵2PB+ PD=2(PB+PD)=2(PB+PE),
∴当PB+PE最小时2PB+ PD有最小值,此时P、B、E三点在同一条直线上,
∵∠DAB=30°,∠AEP=90°,AB=6,
∴PB+PE的最小值=AB=3,
∴2PB+ PD的最小值等于6,
故答案为:6.
此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.
11、1
【解析】
观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.
【详解】
解:如图所示:∵,∴,
∵,,∴,
∴小正方体的面积=大正方形的面积-4个直角三角形的面积
=,故答案为:1.
此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.
12、2
【解析】
分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
详解:∵点A的坐标为(2,4)且OA=AB,
∴O(0,0),B(4,0),C(6,-4),D(8,0),
2017÷8=252……1,
∴b==2.
点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
13、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)EF=.
【解析】
(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC,得出四边形CDEF是平行四边形,即可得出CD=EF;
(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长即可得答案.
【详解】
(1)∵D、E分别为AB、AC的中点,
∴DE为△ABC的中位线,
∴DE∥BC,DE=BC,
∵使CF=BC,
∴DE=FC,
∴四边形CDEF是平行四边形,
∴CD=EF.
(2)∵四边形DEFC是平行四边形,
∴CD=EF,
∵D为AB的中点,等边△ABC的边长是2,
∴AD=BD=1,CD⊥AB,BC=2,
∴EF=CD==.
本题考查等边三角形的性质、平行四边形的判定与性质及三角形中位线的性质,三角形的中位线平行于第三边,且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
15、(1)(2,);(2)[,135]
【解析】
试题分析:认真分析题中所给的指令即可得到结果.
(1)先逆时针旋转60°,再前进4,所以到达的点的坐标是(2,);
(2)要使机器人能到达点(-5,5),应对其下达[,135]
考点:本题考查的是点的坐标
点评:解答本题的关键是读懂题意,正确理解指令[S, A]中的S和A所分别代表是含义.
16、3
【解析】
试题分析:利用平方差公式展开和二次根式的乘除法则运算;然后合并即可.
试题解析:原式=7-5+3-2
=2+1
=3.
17、20分钟
【解析】
他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
【详解】
设他骑“共享助力车”上班需x分钟,
,
解得x=20,
经检验,x=20是原分式方程的解,
答:他骑“共享助力车”上班需20分钟.
此题考查分式方程的实际应用,正确理解题意是解题的关键.
18、 (10+10)海里
【解析】
利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,如图,设BC=x海里,则AC=AB+BC=(20+x)海里.解△PBC,得出PC=BC=x海里,解Rt△APC,得出AC=PC•tan60°=x,根据AC不变列出方程x=20+x,解方程即可.
【详解】
如图,AC⊥PC,∠APC=60°,∠BPC=45°,AB=20海里,设BC=x海里,则AC=AB+BC=(20+x)海里.
在△PBC中,∵∠BPC=45°,
∴△PBC为等腰直角三角形,
∴PC=BC=x海里,
在Rt△APC中,∵tan∠APC=,
∴AC=PC•tan60°=x,
∴x=20+x,
解得x=10+10,
则PC=(10+10)海里.
答:轮船航行途中与灯塔P的最短距离是(10+10)海里.
本题考查了解直角三角形的应用-方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x≥﹣2且x≠1.
【解析】
根据二次根式的非负性及分式有意义的条件来求解不等式即可.
【详解】
解:根据题意,得:x+2≥1且x≠1,
解得:x≥﹣2且x≠1,
故答案为x≥﹣2且x≠1.
二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.
20、
【解析】
直接利用菱形的性质得出其边长以及对角线垂直,进而利用直角三角形的性质得出EO的长.
【详解】
解:∵菱形ABCD的周长为12,
∴AD=3,∠AOD=90°,
∵E为AD边中点,
∴OE=AD=.
故答案为:.
本题主要考查了菱形的性质以及直角三角形的性质(直角三角形斜边上的中线等于斜边的一半),正确掌握直角三角形的性质是解题关键.
21、
【解析】
试题分析:根据勾股定理即可求得结果.
由题意得,正方形M与正方形N的面积之和为
考点:本题考查的是勾股定理
点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.
22、
【解析】
观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.
【详解】
解:不等式x+b≥mx-n的解集为.
故答案为.
本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、
【解析】
根据平移的性质得出所对应的点的横坐标是1+3,纵坐标不变,求出即可.
【详解】
解:∵在平面直角坐标系中,将点向右平移3个单位,
∴所对应的点的横坐标是1+3=4,纵坐标不变,
∴所对应的点的坐标是,
故答案为:.
本题主要考查对坐标与图形变化-平移的理解和掌握,能根据平移性质进行计算是解此题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)a=108,b=0.1;补全频数分布直方图见解析; (2)40≤x<45;(3)优秀的约有7200名.
【解析】
(1)根据在25≤x<30分数段内的频数和频率可以求得本次调查学生数,从而可以求得a、b的值,进而可以将频数分布直方图补充完整;
(2)根据频数分布表中的数据可以得到这组数据的中位数所在的分数段,从而可以解答本题;
(3)根据频数分布表中的数据可以计算出该市12000名九年级考生中考体育成绩为优秀的约有多少名.
【详解】
(1) 本次抽取的学生有:12÷0.05=240(人),
a=240×0.45=108,b=24÷240=0.1,
补全频数分布直方图
(2)由频数分布表可知,
中位数在40≤x<45这个分数段内,
∴甲同学的体育成绩在40≤x<45分数段内,
故答案为:40≤x<45;
(3)12000×(0.45+0.15)=7200(名),
答:该市12000名九年级考生中考体育成绩为优秀的约有7200名.
考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
25、 (1)详见解析;(2)结论成立,理由详见解析.
【解析】
(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.
【详解】
(1)∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴∠BCA=60°,
∵E是线段AC的中点,
∴∠CBE=∠ABE=30°,AE=CE,
∵CF=AE,
∴CE=CF,
∵∠ECF=120°,
∴∠F=∠CEF=30°
∴∠CBE=∠F=30°,
∴BE=EF;
(2)结论成立;理由如下:
过点E作EG∥BC交AB于点G,如图2所示:
∵四边形ABCD为菱形,
∴AB=BC,∠BCD=120°,AB∥CD,
∴∠ACD=60°,∠DCF=∠ABC=60°,
∴∠ECF=120°,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等边三角形,
∴AG=AE=GE,∠AGE=60°,
∴BG=CE,,
又∵CF=AE,
∴GE=CF,
∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,
∴△BGE≌△ECF(SAS),
∴BE=EF.
本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.
26、(1),;(2),时,原式.或(则时,原式)
【解析】
(1)根据分式的运算法则把所给的分式化为最简分式后,再代入求值即可;(2)根据分式的运算法则把所给的分式化为最简分式后,再选择一个使每个分式都有意义的a的值代入求值即可.
【详解】
(1)
,
当时,原式.
(2)原式
,
∵、2、3,
∴或,
则时,原式.或(则时,原式)只要一个结果正确即可
本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简分式是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2019年中考体育成绩(分数段)统计表
分数段
频数(人)
频率
25≤x<30
12
0.05
30≤x<35
24
b
35≤x<40
60
0.25
40≤x<45
a
0.45
45≤x<50
36
0.15
相关试卷
这是一份昌都市重点中学2024年数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届扬州市重点中学九上数学开学考试模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届山西省大同市名校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。