鄂州市重点中学2025届数学九上开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若分式的值为零,则x的值是( )
A.±2B.2C.﹣2D.0
2、(4分)若分式有意义,则实数的取值范围是( )
A.B.C.D.
3、(4分)平行四边形所具有的性质是( )
A.对角线相等
B.邻边互相垂直
C.每条对角线平分一组对角
D.两组对边分别相等
4、(4分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30°B.36°C.54°D.72°
5、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
A.50,20B.50,30C.50,50D.1,50
6、(4分)将矩形按如图所示的方式折叠,得到菱形.若,则的长是( )
A.1B.C.D.2
7、(4分)关于反比例函数y=的下列说法正确的是( )
① 该函数的图象在第二、四象限;
② A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;
③ 当x>2时,则y>-2;
④ 若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.
A.① ③B.①④C.②③D.②④
8、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )
A.3B.4C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是_____.
10、(4分)已知,,则______.
11、(4分)如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为_____.
12、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
13、(4分)已知实数a在数轴上的位置如图所示,化简: +|a﹣1|=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.
(1)根据题干所提供的信息,确定共需租用多少辆汽车?
(2)请你给学校选择一种最节省费用的租车方案.
15、(8分)如图,点A的坐标为(﹣,0),点B的坐标为(0,3).
(1)求过A,B两点直线的函数表达式;
(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.
16、(8分)已知,,若,试求的值.
17、(10分)定义:有三个角相等的四边形叫做三等角四边形.
(1)在三等角四边形中,,则的取值范围为________.
(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;
(3)如图②,三等角四边形中,,若,,,则 的长度为多少?
18、(10分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:
求:(Ⅰ)m=_____,n=_____;
(Ⅱ)求学生捐款数目的众数、中位数和平均数;
(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式2x3y﹣8x2y+8xy=_____.
20、(4分)已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.
21、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
22、(4分)当______时,分式方程会产生增根.
23、(4分)分解因式:m2(a﹣2)+m(2﹣a)= .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,点是边长为的正方形对角线上一个动点(与不重合),以为圆心,长为半径画圆弧,交线段于点,联结,与交于点.设的长为,的面积为.
(1)判断的形状,并说明理由;
(2)求与之间的函数关系式,并写出定义域;
(3)当四边形是梯形时,求出的值.
25、(10分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.
26、(12分)如图,一次函数的图像与反比例函数的图像交于点,,
(1)求反比例函数与一次函数的函数表达式
(2)请结合图像直接写出不等式的解集;
(3)若点P为x轴上一点,△ABP的面积为10,求点P的坐标,
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分式的值为1,则分母不为1,分子为1.
【详解】
∵|x|﹣2=1,
∴x=±2,
当x=2时,x﹣2=1,分式无意义.
当x=﹣2时,x﹣2≠1,
∴当x=﹣2时分式的值是1.
故选C.
分式是1的条件中特别需要注意的是分母不能是1,这是经常考查的知识点.
2、B
【解析】
分式有意义,则,求出x的取值范围即可.
【详解】
∵分式有意义,
∴,
解得:,
故选B.
本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.
3、D
【解析】
根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等,继而即可得出答案.
【详解】
平行四边形的对角相等,对角线互相平分,对边平行且相等.
故选D.
此题考查了平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行且相等;熟记平行四边形的性质是关键.
4、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
5、C
【解析】
根据众数和中位数的定义进行计算即可.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
故选:C.
本题考查众数和中位数,明确众数和中位数的概念是关键.
6、A
【解析】
由矩形可得是直角,由菱形的对角线平分每组对角,再由折叠可得,在直角三角形中,由边角关系可求出答案.
【详解】
解:由折叠得:
是矩形,
是菱形,
,
在中,,,
,
故选:.
本题考查矩形的性质、菱形的性质、折叠轴对称的性质以及直角三角形的边角关系等知识,求出,把问题转化到中,由特殊的边角关系可求出结果.
7、B
【解析】
【分析】根据反比例函数的图象与性质逐一进行判断即可得.
【详解】①k=-4<0,图象在二、四象限,故①正确;
②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;
③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;
④联立,则有,整理得:x2+bx+4=0,
因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,
所以-4<b<4,
故选B.
【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.
8、A
【解析】
作DE⊥AB于E,
∵AB=10,S△ABD =15,
∴DE=3,
∵AD平分∠BAC,∠C=90°,DE⊥AB,
∴DE=CD=3,
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(﹣5,3)
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,
∴AB=AD=5=CD,
∴DO===3,
∵CD∥AB,
∴点C的坐标是:(﹣5,3).
故答案为(﹣5,3).
此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
10、-5
【解析】
根据比例的性质,把写成的形式,然后代入已知数据进行计算即可得解.
【详解】
设由已知则
故-5
本题主要考查了比例的基本性质。
11、
【解析】
分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM=1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.
【详解】
解:过点E作ME⊥AD,延长ME交BC与N,
∵四边形ABCD是矩形
∴AD∥BC,且ME⊥DA
∴EN⊥BC 且∠A=90°=∠ABC=90°
∴四边形ABNM是矩形
∴AB=MN=5,AM=BN
若ME:EN=1:4,如图1
∵ME:EN=1:4,MN=5
∴ME=1,EN=4
∵折叠
∴BE=AB=5,AP=PE
在Rt△BEN中,BN==3
∴AM=3
在Rt△PME中,PE2=ME2+PM2
AP2=(3﹣AP)2+1
解得AP=
若ME:EN=4:1,则EN=1,ME=4,如 图2
在Rt△BEN中,BN==2
∴AM=2
在Rt△PME中,PE2=ME2+PM2
AP2=(2﹣AP )2+16
解得AP=
若点E在矩形外,如图
∵EN:EM=1:4
∴EN=,EM=
在Rt△BEN中,BN==
∴AM=
在Rt△PME中,PE2=ME2+PM2
AP2=(AP﹣)2+()2
解得:AP=5
故答案为,,5.
本题考查矩形的性质、折叠的性质和勾股定理,注意分情况讨论是解题关键.
12、57.5
【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
【详解】
如图,AE与BC交于点F,
由BC //ED 得△ABF∽△ADE,
∴AB:AD=BF:DE,即5:AD=0.4:5,
解得:AD=62.5(尺),
则BD=AD-AB=62.5-5=57.5(尺)
故答案为57.5.
本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
13、1﹣2a.
【解析】
利用数轴上a的位置,进而得出a和a-1的取值范围,进而化简即可.
【详解】
由数轴可得:﹣1<a<0,
则+|a﹣1|=﹣a+1﹣a=1﹣2a.
故答案为1﹣2a.
此题主要考查了二次根式的性质与化简,绝对值得意义,正确化简二次根式是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
【解析】
(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.
(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.
【详解】
解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.
所以,根据题干所提供的信息,确定共需租用6辆汽车.
(2)设租用甲种客车辆,共需费用元,则租用乙种客车辆.
6辆汽车载客人数为人
=
∴
解得
∴,或
当时,甲种客车辆,乙种客车辆,
当时,甲种客车辆,乙种客车辆,
∴最节省费用的租车方案是租用甲种客车辆,乙种客车辆.
本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.
15、(1)过A,B两点的直线解析式为y=2x+3;
(2)△ABP的面积为或.
【解析】
(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;
(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP,再根据三角形面积公式求出即可.
【详解】
解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),
则根据题意,得,
解得:,
则过A,B两点的直线解析式为y=2x+3;
(2)设P点坐标为(x,0),依题意得x=±3,
∴P点坐标分别为P1(3,0),P2(﹣3,0),
=,
=,
故△ABP的面积为或.
本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况.
16、
【解析】
首先利用,代入进行化简,在代入参数计算.
【详解】
解:原式 = = =
本题主要考查分式的化简计算,注意这是二元一次方程的解,利用根与系数的关系也可以计算.
17、(1);(2)见解析;(3)的长度为.
【解析】
(1)根据四边形的内角和是360°,确定出∠BAD的范围;
(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可;
(3)延长BA,过D点作DG⊥BA,继续延长BA,使得AG=EG,连接DE;延长BC,过D点作DH⊥BC,继续延长BC,使得CH=HF,连接DF,由SAS证明△DEG≌△DAG,得出AD=DE=,∠DAG=∠DEA,由SAS证明△DFH≌△DCH,得出CD=DF=6,∠DCH=∠DFH,证出DE∥BF,BE∥DF,得出四边形DEBF是平行四边形,得出DF=BE=6,DE=BF=,由等腰三角形的性质得出EG=AG=(BE-AB)=1,在Rt△DGA中,由勾股定理求出DG==4,由平行四边形DEBF的面积求出,在Rt△DCH中,由勾股定理求出,即可得出BC的长度.
【详解】
(1)∵
∴
∴
∵
∴
∴
故答案为:
(2)证明:∵四边形为平行四边形,
∴,
∴
∵,
∴
∵,,
∴
∴四边形是三等角四边形;
(3)延长,过点作,继续延长,使得,连接;延长,过点作,继续延长,使得,连接,如图所示:
在和中,
∴,
∴,
同理可得,
∴,
∵
∴,
∴,
∴四边形是平行四边形,
∴,,
∴
在中,
∵平行四边形的面积,
即:
∴
在中,
∴
故答案为:的长度为.
本题是四边形综合题目,考查了三等角四边形的判定与性质,翻折变换-折叠问题,四边形的内角和定理,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等和运用勾股定理是解决问题的关键.
18、40 30
【解析】
分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;
(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;
(Ⅲ)利用求得的平均数乘总人数得出答案即可.
详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.
12÷30=40%,9÷30=30%,
所以扇形统计图中的
故答案为40,30;
(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,
∴学生捐款数目的众数是50元;
∵按照从小到大排列,处于中间位置的两个数据都是50,
∴中位数为50元;
这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).
(Ⅲ)根据题意得:
2500×81=202500元
答:估计该校学生共捐款202500元.
点睛: 本题考查扇形统计图, 用样本估计总体, 加权平均数, 中位数, 众数等,熟练掌握各个概念是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2xy(x﹣2)2
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,
故答案为:2xy(x﹣2)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
20、且
【解析】
由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.
【详解】
解:根据题意,得:,且,解得:且.
故答案为:且.
本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.
21、1
【解析】
先求出体育优秀的占总体的百分比,再乘以360°即可.
【详解】
解:圆心角的度数是:
故答案为:1.
本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
22、1
【解析】
解分式方程,根据增根的含义:使最简公分母为0的根叫做分式方程的增根,即可求得.
【详解】
解:去分母得,解得,
而此方程的最简公分母为,令故增根为.
即,解得.
故答案为1.
本题考查解分式方程,难度不大,是中考的常考点,熟练掌握增根的含义是顺利解题的关键.
23、m(a﹣2)(m﹣1)
【解析】
试题分析:将m2(a﹣2)+m(2﹣a)适当变形,然后提公因式m(a﹣2)即可.
解:m2(a﹣2)+m(2﹣a),
=m2(a﹣2)﹣m(a﹣2),
=m(a﹣2)(m﹣1).
二、解答题(本大题共3个小题,共30分)
24、(1)为等腰直角三角形,理由见解析;(2)y=;(3)
【解析】
(1)先证明,再证明四边形是矩形,再证明,可得,即可得为等腰直角三角形.
(2)由,,即可求得与之间的函数关系式.
(3)因为四边形是梯形时,得.求PF的长,需利用已知条件求AC,AP,CE的长,则即可得出答案.
【详解】
解:(1) 为等腰直角三角形,理由如下:
在正方形中,,
又,
由题意可得,,
过点作,与分别交于点,
在正方形中,
四边形是矩形,
在中,
又
为等腰直角三角形
(2)在中,,
在中,
为等腰直角三角形,
(3)在等腰直角三角形中,
,
当四边形是梯形时,只有可能,
此题考查全等三角形的判定与性质,函数表达式的求解,梯形的性质,解题关键在于综合运用考点,利用图形与函数的结合求解即可.
25、(1)反比例函数解析式为:y=;(2)P(5,0);(3)Q点坐标为:(,0).
【解析】
试题分析:(1)利用已知点B坐标代入一次函数解析式得出答案,再利用△OBM的面积得出M点纵坐标,再利用相似三角形的判定与性质得出M点坐标即可得出反比例函数解析式;
(2)过点M作PM⊥AM,垂足为M,得出△AOB∽△PMB,进而得出BP的长即可得出答案;
(3)利用△QBM∽△OAM,得出=,进而得出OQ的长,即可得出答案.
解:(1)如图1,过点M作MN⊥x轴于点N,
∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,
∴0=k1﹣1,AO=BO=1,
解得:k1=1,
故一次函数解析式为:y=x﹣1,
∵△OBM的面积为1,BO=1,
∴M点纵坐标为:2,
∵∠OAB=∠MNB,∠OBA=∠NBM,
∴△AOB∽△MNB,
∴==,
则BN=2,
故M(3,2),
则xy=k2=6,
故反比例函数解析式为:y=;
(2)如图2,过点M作PM⊥AM,垂足为M,
∵∠AOB=∠PMB,∠OBA=∠MBP,
∴△AOB∽△PMB,
∴=,
由(1)得:AB==,BM==2,
故=,
解得:BP=4,
故P(5,0);
(3)如图3,∵△QBM∽△OAM,
∴=,
由(2)可得AM=3,
故=,
解得:QB=,
则OQ=,
故Q点坐标为:(,0).
考点:反比例函数综合题.
26、(1);;(2)或;(3)点P的坐标为(3,0)或(-5,0).
【解析】
(1)根据反比例函数的图象经过,利用待定系数法即可求出反比例函数的解析式;进而求得的坐标,根据、点坐标,进而利用待定系数法求出一次函数解析式;
(2)根据、的坐标,结合图象即可求得;
(3)根据三角形面积求出的长,根据的坐标即可得出的坐标.
【详解】
解:(1)反比例函数的图象经过,
.
反比例函数的解析式为.
在上,所以.
的坐标是.
把、代入.得:,
解得,
一次函数的解析式为.
(2)由图象可知:不等式的解集是或;
(3)设直线与轴的交点为,
把代入得:,
,
的坐标是,
为轴上一点,且的面积为10,,,
,
,
当在负半轴上时,的坐标是;
当在正半轴上时,的坐标是,
即的坐标是或.
本题考查了用待定系数法求一次函数的解析式,一次和图象上点的坐标特征,三角形的面积的应用,主要考查学生的计算能力.
题号
一
二
三
四
五
总分
得分
批阅人
捐款(元)
20
50
100
150
200
人数(人)
4
12
9
3
2
东营市重点中学2024年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份东营市重点中学2024年九上数学开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届十堰市重点中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届十堰市重点中学数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年淄博市重点中学九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年淄博市重点中学九上数学开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。