福建省福清市江阴中学2025届数学九年级第一学期开学复习检测模拟试题【含答案】
展开
这是一份福建省福清市江阴中学2025届数学九年级第一学期开学复习检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是( )
A.1B.C.2D.
2、(4分)如图,在中,,点是的中点,交于点,,则的长为( )
A.B.C.D.
3、(4分)我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
A.1.2(1+x)=2.5
B.1.2(1+2x)=2.5
C.1.2(1+x)2=2.5
D.1.2(1+x)+1.2(1+x)2=2.5
4、(4分)如图,中,对角线,相交于点,添加下列条件不能判定是菱形的是( )
A.B.C.D.
5、(4分)已知,多项式可因式分解为,则的值为( )
A.-1B.1C.-7D.7
6、(4分)已知三条线段的长分别为1.5,2,3,则下列线段中,不能与它们组成比例线段的是( )
A.lB.2.25C.4D.2
7、(4分)小红随机写了一串数“”,数字“”出现的频数是( )
A.4B.5C.6D.7
8、(4分)下列命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等
C.平行四边形的对角线互相平分D.全等三角形的对应边相等
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,则阴影部分的面积S=______cm2.
10、(4分)一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水____________升.
11、(4分)某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则等级所在扇形的圆心角是_______º.
12、(4分)如图,在正方向中,是对角线上一点,的延长线与交于点,若,则______;
13、(4分)函数有意义,则自变量x的取值范围是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
15、(8分)如图,已知直线交轴于点,交轴于点,点,是直线上的一个动点.
(1)求点的坐标,并求当时点的坐标;
(2)如图,以为边在上方作正方形,请画出当正方形的另一顶点也落在直线上的图形,并求出此时点的坐标;
(3)当点在上运动时,点是否也在某个函数图象上运动?若是请直接写出该函数的解析式;若不在,请说明理由.
16、(8分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的
对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.
特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.
(1)如图1,在正方形ABCD中,点,点,
①下列四个点,,,中,与点A是“中心轴对称”的是________;
②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;
(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.
17、(10分)如图,在平行四边形中,E、F分别为边、的中点,是平行四边形的对角线,交的延长线于点G.
(1)求证:四边形是平行四边形.
(2)若,求的度数.
18、(10分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.
(1)求点B的坐标;
(2)当△OPB是直角三角形时,求点P运动的时间;
(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果关于的不等式组无解,则的取值范围是_____.
20、(4分)如图 ,D 为△ABC 的 AC 边上的一点,∠A=∠DBC=36°,∠C=72°,则图中 共有等腰三角形____个.
21、(4分)如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA的面积为_______.
22、(4分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=16,则D到AB边的距离是 .
23、(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为 .
25、(10分)如图,已知正方形,点、分别在边、上,若,判断、的关系并证明.
26、(12分)如图,在四边形ABCD中,AB=AD=3,DC=4,∠A=60°,∠D=150°,试求BC的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题分析:∵菱形ABCD的边长为1,
∴AD=AB=1,
又∵∠DAB=60°,
∴△DAB是等边三角形,
∴AD=BD=AB=1,
则对角线BD的长是1.
故选C.
考点:菱形的性质.
2、C
【解析】
连接BE,利用HL说明BC=BD,由于在Rt△CBA中,BA=2BC,得到∠A=30°,在Rt△DEA中,利用∠A的正切值与边的关系,得到AD的长,再计算出AB的长.
【详解】
解:连接BE,
∵D是AB的中点,
∴BD=AD=AB
∵∠C=∠BDE=90°,
在Rt△BCE和Rt△BDE中,
∵ ,
∴△BCD≌△BDE,
∴BC=BD=AB.
∴∠A=30°.
∴tanA=
即,
∴AD=3,
∴AB=2AD=1.
故选C.
本题考查直角三角形的判定、特殊角的三角函数值及锐角三角函数.解题的关键是根据边间关系得出∠A的度数.
3、C
【解析】
试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
1.2(1+x)2=2.5,
故选C.
4、B
【解析】
根据平行四边形的性质.菱形的判定方法即可一一判断.
【详解】
解:A、正确.对角线垂直的平行四边形是菱形.
B、错误.对角线相等的平行四边形是矩形,不一定是菱形.
C、正确.邻边相等的平行四边形是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.
故选B.
本题考查的是菱形的判定,熟练掌握菱形的判定定理是解题的关键.
5、B
【解析】
根据因式分解与整式的乘法互为逆运算,把利用乘法公式展开,即可求出m的值.
【详解】
=
又多项式可因式分解为
∴m=1
故选B
此题考查了因式分解的意义,用到的知识点是因式分解与整式的乘法互为逆运算,是一道基础题.
6、D
【解析】
对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 ab=cd(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.据此求解可得.
【详解】
解:A.由1×3=1.5×2知1与1.5,2,3组成比例线段,此选项不符合题意;
B.由1.5×3=2.25×2知2.25与1.5,2,3组成比例线段,此选项不符合题意;
C.由1.5×4=3×2知4与1.5,2,3组成比例线段,此选项不符合题意;
D.由1.5×3≠2×2知2与1.5,2,3不能组成比例线段,此选项符合题意;
故选:D
本题主要考查了成比例线段的关系,判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.
7、D
【解析】
根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.
【详解】
∵一串数“”中,数字“3”出现了1次,
∴数字“3”出现的频数为1.
故选D.
此题考查频数与频率,解题关键在于掌握其概念
8、B
【解析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由题意可知:已知正方形ABCD面积等于25cm2,边长是5,正方形DEFG的面积等于9cm2,边长是3,阴影部分是正方形ABCD面积的一半,加上正方形DEFG的面积,减去底为5+3=8cm,高为3cm的三角形的面积,由此列式得出答案即可.
【详解】
解:∵正方形ABCD面积等于25cm2,正方形DEFG的面积等于9cm2,
∴正方形ABCD边长是5,正方形DEFG的边长是3,
∴阴影部分的面积S=25×+9-×(5+3)×3
= + -
=.
故答案为:.
本题考查正方形的性质,整式的混合运算,掌握组合图形面积之间的计算关系是解决问题的关键.
10、7.1
【解析】
出水量根据后4分钟的水量变化求解.
【详解】
解:根据图象,每分钟进水20÷2=10升,
设每分钟出水m升,则 10×(6-2)-(6-2)m=30-20,
解得:m=7.1.
故答案为:7.1
本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
11、72°
【解析】
根据扇形统计图计算出C等级所在的扇形的圆心角,即可解答
【详解】
C等级所在的扇形的圆心角=(1−25%−35%−8%−12%)⋅360°=72°,
故答案为:72°
此题考查扇形统计图,难度不大
12、4
【解析】
由正方形的对称性和矩形的性质可得结果.
【详解】
连接DE交FG于点O,由正方形的对称性及矩形的性质可得:
∠ABE=∠ADF=∠OEF=∠OFE=15°, ∴∠EOH=30°, ∴BE=DE=2OE=4EH, ∴=4.
故答案为4.
本题考查了正方形的性质与矩形的性质,解答本题的关键是利用正方形的对称性求得∠ABE=∠ADF=∠OEF=∠OFE=15,进而利用RT△中30°所对的直角边等于斜边的一半解决问题.
13、且
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.
【详解】
要使在实数范围内有意义,
必须
所以x≥1且,
故答案为:x≥1且.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
三、解答题(本大题共5个小题,共48分)
14、20,1
【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
【详解】
∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
15、(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
【解析】
(1)利用待定系数法求出A,B两点坐标,再构建方程即可解决问题.
(2)分两种情形:①如图1,当点F在直线上时,过点D作DG⊥x轴于点G,过点F作FH⊥x轴于点H,②如图2,当点E在直线上时,过点D作DG⊥x轴于点G,过点E作EH⊥x轴于点H,过点D作DM⊥EH于点M,分别求解即可解决问题.
(3)由(2)①可知:点F的坐标F(2m-7,m+3),令x=2m-7,y=m+3,消去m即可得到.
【详解】
解:(1)令,则,解得,,,
易得,
由得, ,解得,
由 解得或2.8,
∴D(1.2,1.6)或(2.8,-1.6).
(2)①如图1,当点在直线上时,过点作轴于点,过点作轴于点,
图1
设,易证
,,
则,
,
,得,
;
②如图2,当点在直线上时,过点作轴于点,过点作轴于点,
图2
过点作于点,
同①可得,,
则,,
,
得,
;
(3) 设D(m,-2m+4),由(2)①可知:F(2m-7,m+3),
令x=2m-7,y=m+3,消去m得到:
点在直线上运动.
故答案为:(1),D(1.2,1.6)或(2.8,-1.6);(2)或,见解析;(3)点F在直线上运动,见解析.
本题属于一次函数综合题,考查正方形的性质,三角形的面积,全等三角形的判定和性质,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.
16、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.
【解析】
(1)①根据画出图形,根据“中心轴对称”的定义即可判断.
②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.
(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.
【详解】
解:(1)如图1中,
①∵OA=1,OP1=1,OP1=1,
∴P1,P1与点A是“中心轴对称”的,
故答案为P1,P1.
②如图2中,
以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.
∵在正方形ABCD中,点A(1,0),点C(2,1),
∴点B(1,1),
∵点E在射线OB上,
∴设点E的坐标是(x,y),
则x=y,
即点E坐标是(x,x),
∵点E与正方形ABCD是“中心轴对称”的,
∴当点E与点A对称时,则OE=OA=1,
过点E作EH⊥x轴于点H,则OH2+EH2=OE2,
∴x2+x2=12,
解得x=,
∴点E的横坐标xE=,
同理可求点:F(,),
∵E(,),F(,),
∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.
(2)如图3中,设GK交x轴于P.
当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,
当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,
观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.
根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.
综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.
本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.
17、(1)证明见解析;(2)
【解析】
(1)根据平行四边形的性质得出AD∥BC,DC∥AB,DC=AB,推出DF=BE,DF∥BE,根据平行四边形的判定推出即可;
(2)先证明四边形AGBD是平行四边形,再证出∠ADB=90°,得到四边形AGBD为矩形,即可得出结论.
【详解】
解:(1)证明:∵四边形是平行四边形,
分别为边的中点,
,
.
∵BE∥DF,
∴四边形是平行四边形.
(2)∵四边形ABCD是平行四边形,
∴AD∥BG,
∵AG∥BD,
∴四边形AGBD是平行四边形,
∵点E是AB的中点,
∴AE=BE=AB,
∵AE=DE,
∴AE=DE=BE,
∴∠DAE=∠ADE,∠EDB=∠EBD,
∵∠DAE+∠ADE+∠EDB+∠EBD=180°,
∴2∠ADE+2∠EDB=180°,
∴∠ADE+∠EDB=90°,即∠ADB=90°,
∴平行四边形AGBD是矩形.
∴∠G=90°.
本题考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质是解题的关键.
18、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.
【解析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;
(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;
(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.
【详解】
(1)直线y=kx﹣3过点A(1,0),
所以,0=1k-3,解得:k=,
直线AB为:-3,
,解得:,
所以,点B的坐标(2,-2)
(2)∵∠BOP=45°,△OPB是直角三角形,
∴∠OPB=90°或∠OBP=90°,如图1所示:
①当∠OPB=90°时,△OPB为等腰直角三角形,
∴OP=BP=2,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为2秒;
②当∠OBP=90°时,△OPB为等腰直角三角形,
∴OP=2BP=4,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为4秒.
综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.
(3)∵BP平分△OAB的面积,
∴S△OBP=S△ABP,
∴OP=AP,
∴点P的坐标为(3,0).
设直线BP的解析式为y=ax+b(a≠0),
将B(2,-2),点P(3,0)代入y=ax+b,得:
,
解得:,
∴直线BP的解析式为y=2x-1.
当x=0时,y=2x-1=-1,
∴点D的坐标为(0,-1).
过点B作BE⊥y轴于点E,如图2所示.
∵点B的坐标为(2,-2),点D的坐标为(0,-1),
∴BE=2,CE=4,
∴BD==2,
∴当BP平分△OAB的面积时,线段BD的长为2.
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰直角三角形、三角形的面积以及勾股定理,解题的关键是:(1)联立直线AB及OB的解析式成方程组,通过解方程组求出点B的坐标;(2)分∠OPB=90°和∠OBP=90°两种情况,利用等腰直角三角形的性质求出点P的运动时间;(3)根据点的坐标,利用待定系数法求出直线BP的解析式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、a≤1.
【解析】
分别求解两个不等式,当不等式“大大小小”时不等式组无解,
【详解】
解:
∴不等式组的解集是
∵不等式组无解,即,
解得:
本题考查了求不等式组的解集和不等式组无解的情况,属于简单题,熟悉无解的含义是解题关键.
20、1
【解析】
由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.
【详解】
解:∵∠C=72゜,∠A=∠DBC=16゜,
∴∠BDC=180°-∠DBC-∠C=72°=∠C,
∴BC=BD,即△BCD是等腰三角形;
∴∠ABD=∠BDC-∠A=16°=∠A,
∴AD=BD,即△ABD是等腰三角形;
∴∠ABC=∠ABD+∠DBC=72°=∠C,
∴AB=AC,即△ABC是等腰三角形.
故答案为:1.
此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
21、1
【解析】
P在y=x上可知△POA为等腰直角三角形,过P作PC⊥OA于点C,则可知S△POC=S△PCA=k=2,进而可求得△POA的面积为1.
【详解】
解:过P作PC⊥OA于点C,
∵P点在y=x上,
∴∠POA=15°,
∴△POA为等腰直角三角形,
则S△POC=S△PCA=k=2,
∴S△POA=S△POC+S△PCA=1,
故答案为1.
本题考查反比例函数y= (k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.也考查了等腰直角三角形的性质.
22、1.
【解析】
作DE⊥AB,根据角平分线性质可得:DE=CD=1.
【详解】
如图,作DE⊥AB,
因为∠C=90°,AD是∠BAC的平分线,CD=1,
所以,DE=CD=1.即:D到AB边的距离是1.
故答案为1
本题考核知识点:角平分线性质. 解题关键点:利用角平分线性质求线段长度.
23、40°。
【解析】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.
点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)当点O运动到AC的中点时,四边形CEAF是矩形,理由详见解析;(3)1.
【解析】
(1)由平行线的性质和角平分线的定义得出∠OEC=∠OCE,证出EO=CO,同理得出FO=CO,即可得出EO=FO;
(2)由对角线互相平分证明四边形CEAF是平行四边形,再由对角线相等即可得出结论;
(3)先根据勾股定理求出AC,得出△ACE的面积=AE×EC,再由勾股定理的逆定理证明△ABC是直角三角形,得出△ABC的面积=AB•AC,凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积,即可得出结果.
【详解】
(1)证明:∵EF∥BC,
∴∠OEC=∠BCE,
∵CE平分∠ACB,
∴∠BCE=∠OCE,
∴∠OEC=∠OCE,
∴EO=CO,
同理:FO=CO,
∴EO=FO;
(2)解:当点O运动到AC的中点时,四边形CEAF是矩形;理由如下:
由(1)得:EO=FO,
又∵O是AC的中点,
∴AO=CO,
∴四边形CEAF是平行四边形,
∵EO=FO=CO,
∴EO=FO=AO=CO,
∴EF=AC,
∴四边形CEAF是矩形;
(3)解:由(2)得:四边形CEAF是矩形,
∴∠AEC=90°,
∴AC===5,
△ACE的面积=AE×EC=×3×4=6,
∵122+52=132,
即AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴△ABC的面积=AB•AC=×12×5=30,
∴凹四边形ABCE的面积=△ABC的面积﹣△ACE的面积=30﹣6=1;
故答案为1.
本题考查了角平分线的概念,三角形的性质,矩形的判断以及四边形与几何动态综合,知识点综合性强,属于较难题型.
25、且.证明见解析.
【解析】
先证明,得到及,再证得即可.
【详解】
且.证明如下.
在正方形中,
在和中
∴
∴
又∵
∴
∴
∴
∴且
本题考查了正方形的性质及全等三角形的判定和性质,熟练掌握相关性质是解题的关键.
26、
【解析】
试题分析:连接DB,根据AB=AD,∠A=60°得出等边三角形,根据等边三角形的性质以及∠ADC=150°得出△BDC为直角三角形,最后根据勾股定理求出BC的长度.
试题解析:连结DB, ∵,, ∴是等边三角形,
∴,, 又∵
∴, ∵
∴
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份福建省福清市2024年数学九上开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省江阴市初级中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年福建省莆田中学山中学九年级数学第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。