


福建省福州市鼓楼区屏东中学2024-2025学年数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若m个数的平均数x,另n个数的平均数y,则m+n个数的平均数是( )
A.B.C.D.
2、(4分)某小组7名同学积极捐出自己的零花钱支援地震灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,1.这组数据的众数和中位数分别是( ).
A.50,20B.50,30C.50,50D.1,50
3、(4分).一支蜡烛长20m,点燃后每小时燃烧5厘米,燃烧时剩下的高度(厘米)与燃烧时间(时)的函数关系的图像是
A.B.C.D.
4、(4分)下列命题的逆命题成立的是( )
A.对顶角相等
B.菱形的两条对角线互相垂直平分
C.全等三角形的对应角相等
D.如果两个实数相等,那么它们的绝对值相等
5、(4分)如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了( )
A.75°B.45°C.60°D.15°
6、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
7、(4分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为
A.B.C.D.
8、(4分)如图,中,对角线,相交于点,添加下列条件不能判定是菱形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图中的数字都是按一定规律排列的,其中x的值是________.
10、(4分)如图,和的面积相等,点在边上,交于点.,,则的长是______.
11、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
①y的值随x的值的增大而增大;
②b>0;
③关于x的方程的解为.
其中说法正确的有______只写序号
12、(4分)当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.
13、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一棵树的树梢,问小鸟至少飞行几米?
15、(8分)课堂上老师讲解了比较和的方法,观察发现11-10=15-14=1,于是比较这两个数的倒数:
,
,
因为>,所以>,则有<.
请你设计一种方法比较与的大小.
16、(8分)计算:
(1).
(2).
17、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是_____km/h;
(2)当1≤x≤5时,求y乙关于x的函数解析式;
(3)当乙与A地相距240km时,甲与A地相距_____km.
18、(10分)已知:如图,□ABCD中,延长BA至点E,使BE=AD,连结CE,求证:CE平分∠BCD.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果最简二次根式和是同类二次根式,那么a=_______
20、(4分)如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.
21、(4分)已知有两点、都在一次函数的图象上,则的大小关系是______(用“<”连接)
22、(4分)若+(y﹣2)2=0,那么(x+y)2018=_____.
23、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.
(1)求证:四边形ABEF是菱形;
(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.
25、(10分)2018年1月25日,济南至成都方向的高铁线路正式开通,高铁平均时速为普快平均时速的4倍,从济南到成都的高铁运行时间比普快列车减少了26小时,济南市民早上可在济南吃完甜沫油条,晚上在成都吃麻辣火锅了.已知济南到成都的火车行车里程约为2288千米,求高铁列车的平均时速.
26、(12分)如图,在中,,E为CA延长线上一点,D为AB上一点,F为外一点且连接DF,BF.
(1)当的度数是多少时,四边形ADFE为菱形,请说明理由:
(2)当AB= 时,四边形ACBF为正方形(请直接写出)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
m+n个数的平均数=,
故选C.
2、C
【解析】
根据众数和中位数的定义进行计算即可.
【详解】
众数是一组数据中出现次数最多的数,在这一组数据中2是出现次数最多的,故众数是2;
将这组数据从小到大的顺序排列为:20,25,30,2,2,2,1,处于中间位置的那个数是2,由中位数的定义可知,这组数据的中位数是2.
故选:C.
本题考查众数和中位数,明确众数和中位数的概念是关键.
3、D
【解析】
燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t (0≤t≤4),图象是以(0,20),(4,0)为端点的线段.
【详解】
解:燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系是:h=20-5t (0≤t≤4),
图象是以(0,20),(4,0)为端点的线段.
故选:D.
此题首先根据问题从图中找出所需要的信息,然后根据燃烧时剩下高度h(cm)与燃烧时间t(小时)的关系h=20-5t (0≤t≤4),做出解答.
4、B
【解析】
首先写出各个命题的逆命题,再进一步判断真假.
【详解】
A、对顶角相等的逆命题是相等的角是对顶角,是假命题;
B、菱形的两条对角线互相垂直平分的逆命题是两条对角线互相垂直平分的四边形的菱形,是真命题;
C、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;
D、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么相等,是假命题;
故选:B.
本题考查逆命题的真假性,是易错题.
易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.
5、C
【解析】
首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.
【详解】
根据题意△ABC是等边三角形
可得B点旋转后的点为C
旋转角为
故选C.
本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.
6、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
7、D
【解析】
从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n的有n个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.
【详解】
在横坐标上,第一列有一个点,第二列有2个点第n个有n个点,
并且奇数列点数对称而偶数列点数y轴上方比下方多一个,
所以奇数列的坐标为;
偶数列的坐标为,
由加法推算可得到第100个点位于第14列自上而下第六行.
代入上式得,即.
故选D.
本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.
8、B
【解析】
根据平行四边形的性质.菱形的判定方法即可一一判断.
【详解】
解:A、正确.对角线垂直的平行四边形是菱形.
B、错误.对角线相等的平行四边形是矩形,不一定是菱形.
C、正确.邻边相等的平行四边形是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.
故选B.
本题考查的是菱形的判定,熟练掌握菱形的判定定理是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.
【详解】
解:由题意知,m+1=n且m+n=19,
∴m=9,n=10,
∴x=19×10-9=1,
故答案为:1.
本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.
10、14
【解析】
根据题意可得和的高是相等的,再根据,可得的高的比值,进而可得的比值,再计算DF的长.
【详解】
解:根据题意可得和的高是相等的
故答案为14.
本题主要考查三角形的相似比等于高的比,这是一个重要的考点,必须熟练掌握.
11、.
【解析】
一次函数及其应用:用函数的观点看方程(组)或不等式.
【详解】
由图象得:
①的值随的值的增大而增大;
②;
③关于的方程的解为.
故答案为:①②③.
本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
12、1
【解析】
先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.
【详解】
因为,
即当x分别取值,为正整数时,计算所得的代数式的值之和为1;
而当时,.
因此,当x分别取值,,,,,1,2,,2117,2118,2119时,
计算所得各代数式的值之和为1.
故答案为:1.
本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.
13、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
三、解答题(本大题共5个小题,共48分)
14、小鸟至少飞行10米.
【解析】
根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
【详解】
如图,设大树高为AB=10m,
小树高为CD=4m,
过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,
在Rt△AEC中,AC═=10(m),
答:小鸟至少飞行10米.
本题考查了勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.
15、方法见解析.
【解析】
【分析】观察可知8+3=6+5,因此可以利用两数平方进行比较进而得出答案.
【详解】 ,
,
∵,
∴,
∵, ,
∴ .
【点睛】本题考查了实数大小比较,二次根式的运算,理解题意,并且根据式子的特点确定出合适的方法是解题的关键.
16、(1);(2);
【解析】
(1)先化简第二项,再合并同类二次根式即可;
(2)把分子、分母都乘以化简即可.
【详解】
解:(1)原式;
(2)原式
=.
本题考查了二次根式的加减,以及分母有理化,熟练掌握二次根式的加减法法则、分母有理化的方法是解答本题的关键.
17、(1)V甲=60km/h (2)y乙=90x-90 (3)220
【解析】
(1)根据图象确定出甲的路程与时间,即可求出速度;
(2)利用待定系数法确定出y乙关于x的函数解析式即可;
(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.
【详解】
(1)根据图象得:360÷6=60km/h;
(2)当1≤x≤5时,设y乙=kx+b,
把(1,0)与(5,360)代入得: ,
解得:k=90,b=-90,
则y乙=90x-90;
(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,
∴乙用的时间是240÷90=h,
则甲与A地相距60×(+1)=220km.
此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.
18、见解析
【解析】
分析:由平行四边形的性质得出AB∥CD, AD=BC,由平行线的性质得出∠E=∠DCE,由已知条件得出BE=BC,由等腰三角形的性质得出∠E=∠BCE,得出∠DCE=∠BCE即可.
详解:∵四边形ABCD是平行四边形,
∴AB∥CD,AD=BC,
∴∠E=∠DCE,
∵BE=AD,
∴BE=BC,
∴∠E=∠BCE,
∴∠DCE=∠BCE,
即CE平分∠BCD.
点睛:本题考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证出∠E=∠BCE是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
分析:根据同类二次根式的被开方式相同列方程求解即可.
详解:由题意得,
3a+4=25-4a,
解之得,
a=3.
故答案为:3.
点睛:本题考查了同类二次根式的应用,根据同类二次根式的定义列出关于a的方程是解答本题的关键.
20、
【解析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【详解】
连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴
∴
则
∵FE=BE=EC,
∴
∴
故答案为
考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.
21、
【解析】
利用一次函数的增减性可求得答案.
【详解】
∵y=−3x+n,
∴y随x的增大而减小,
∵点 、都在一次函数y=−3x+n的图象上,且1>−2,
∴,
故答案为:.
此题考查一次函数图象上点的坐标特征,解题关键在于掌握函数图象的走势.
22、1
【解析】
直接利用偶次方的性质以及算术平方根的定义得出x,y的值,进而得出答案.
【详解】
∵+(y-2)2=0,
∴x+3=0,y-2=0,
解得:x=-3,y=2,
则(x+y)2018=(-3+2)2018=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
23、2或
【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则, II. 当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.
【详解】
解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.
设AE=FC=x.
由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.
∵AE∥DG,
∴∠AED=∠EDF.
∴∠DEP=∠EDF.
∴EF=DF.
∴GF=DF﹣DG=x+1.
在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).
∴EF=2x+1=2×2+1=2.
II. 当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,
在Rt△EFG中,∵EF2=EG2+FG2,
∴(2x﹣1)2=42+(x﹣1)2,
∴x=或﹣2(舍弃),
∴EF=2x﹣1=
故答案为:2或.
本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)AE=10,四边形ABEF的面积=50.
【解析】
(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.
(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.
【详解】
(1)证明∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴BE=AB,且AF=AB,
∴BE=AF,
又∵BE∥AF,
∴四边形ABEF是平行四边形,
∵AF=AB,
∴四边形ABEF是菱形;
(2)∵四边形ABEF为菱形,且周长为40,BF=10
∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,
在Rt△AOB中,AO=,
∴AE=2AO=10.
∴四边形ABEF的面积=BF•AE=×10×10=50
本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.
25、264千米/小时
【解析】
设普快列车的平均时速为x千米/小时,则高铁列车的平均时速为4x千米/小时,根据时间=路程÷速度;结合从济南到成都的高铁运行时间比普快列车减少了26小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:设普快列车的平均时速为x千米/小时,则高铁列车的平均时速为4x千米/小时,
根据题意得:
解得:x=66,
经检验,x=66是原方程的根,且符合题意,
∴原方程的解为x=66,
∴.4x=66×4=264.
答:高铁列车的平均时速为264千米/小时.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
26、 (1)当时,四边形ADFE为菱形,理由详见解析; (2).
【解析】
(1)当∠CAB=60°时,四边形ADFE为菱形;由平行线的性质可证∠AFE=∠DAF,∠AEF=∠CAB=60°,可得△AEF,△AFD都是等边三角形,可得AE=AF=AD=EF=FD,即可得结论.
(2)由正方形的性质可求解.
【详解】
(1)当∠CAB=60°时,四边形ADFE为菱形,
理由如下:
∵AE=AF=AD
∴∠AEF=∠AFE,
∵EF∥AB
∴∠AFE=∠DAF,∠AEF=∠CAB=60°
∴∠FAD=60°
∴△AEF,△AFD都是等边三角形
∴AE=AF=AD=EF=FD
∴四边形ADFE为菱形
(2)若四边形ACBF为正方形
∴AC=BC=1,∠ACB=90°
∴AB=
∴当AB=时,四边形ACBF为正方形
故答案为
本题考查了正方形的判定和性质,菱形的判定和性质,等腰三角形的性质,灵活运用这些性质解决问题是本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2025届福建省福州市鼓楼区福州屏东中学九上数学开学调研模拟试题【含答案】: 这是一份2025届福建省福州市鼓楼区福州屏东中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省福州市屏东中学九上数学开学联考模拟试题【含答案】: 这是一份2024年福建省福州市屏东中学九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省溧水高级中学数学九上开学达标检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。