终身会员
搜索
    上传资料 赚现金

    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】

    立即下载
    加入资料篮
    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】第1页
    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】第2页
    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】

    展开

    这是一份福建省龙岩市上杭四中学2025届数学九年级第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)函数 y 中,自变量 x 的取值范围是( )
    A.x=-5B.x≠-5C.x=0D.x≠0
    2、(4分)在等腰三角形中,,则的周长为( )
    A.B.C.或D.或
    3、(4分)如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为( )
    A.7B.6C.5D.4
    4、(4分)若分式有意义,则的取值范围是( )
    A. B.C.D.
    5、(4分)如图,在矩形ABCD中,AB=2,AD=3,E是BC边上一点,将沿AE折叠,使点B落在点处,连接,则的最小值是( )
    A.B.C.D.
    6、(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是( )
    A.120°B.115°C.105°D.100°
    7、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是( )
    A.(3,1)(1,);B.(1,3)(,1);C.(3,0)(0,) ;D.(0,3)(,0)
    8、(4分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则csA的值是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在平行四边形中,点在上,,点是的中点,若点以1厘米/秒的速度从点出发,沿向点运动;点同时以2厘米/秒的速度从点出发,沿向点运动,点运动到停止运动,点也同时停止运动,当点运动时间是_____秒时,以点为顶点的四边形是平行四边形.
    10、(4分)若分式的值与1互为相反数,则x的值是__________.
    11、(4分)如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.
    12、(4分)如图,在菱形ABCD中,AB=5,对角线AC=1.若过点A作AE⊥BC,垂足为E,则AE的长为_________.
    13、(4分)若方程x2+kx+9=0有两个相等的实数根,则k=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在正方形ABCD中,E、F分别是BC、AB上一点,且AF=BE,AE与DF交于点G.
    (1)求证:AE=DF.
    (2)如图2,在DG上取一点M,使AG=MG,连接CM,取CM的中点P.写出线段PD与DG之间的数量关系,并说明理由.
    (3)如图3,连接CG.若CG=BC,则AF:FB的值为 .
    15、(8分)如图,一次函数y=kx+b(k≠0)经过点B(0,1),且与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).
    (1)求一次函数与反比例函数的解析式;
    (2)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?
    16、(8分)如图1,点C、D是线段AB同侧两点,且AC=BD,∠CAB=∠DBA,连接BC,AD交于点 E.
    (1)求证:AE=BE;
    (2)如图2,△ABF与△ABD关于直线AB对称,连接EF.
    ①判断四边形ACBF的形状,并说明理由;
    ②若∠DAB=30°,AE=5,DE=3,求线段EF的长.
    17、(10分)如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF⊥AE 于 F.
    (1)请判断△PFA 与△ABE 是否相似,并说明理由;
    (2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.
    18、(10分)把下列各式分解因式:
    (1)x(x-y)2-2(y-x)2 (2)(x2+4)2-16x2
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)函数有意义,则自变量x的取值范围是___.
    20、(4分)在函数中,自变量的取值范围是________.
    21、(4分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
    22、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
    23、(4分)把(a-2)根号外的因式移到根号内,其结果为____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点E是正方形ABCD的BC延长线上一点,连接ED,过点B作交ED的延长线于点F,连接CF.
    (1)若,,求BF的长;(2)求证:.
    25、(10分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.
    (1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;
    (2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.
    26、(12分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据分式的意义的条件:分母不等于0,可以求出x的范围.
    【详解】
    解:根据题意得:x+1≠0,
    解得:x≠-1.
    故选B.
    函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    2、A
    【解析】
    等腰△ABC的两边长分别为4和2,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
    【详解】
    ①当腰是AB,则周长为4+4+2=10;
    ②当腰是BC,则三边为4,2,2,此时不能构成三角形,舍去.
    故选A.
    此题考查等腰三角形的性质,三角形三边关系,解题关键在于分情况讨论
    3、B
    【解析】
    根据平移的性质分别求出a、b的值,计算即可.
    【详解】
    解:点A的横坐标为-1,点C的横坐标为1,
    则线段AB先向右平移2个单位,
    ∵点B的横坐标为1,
    ∴点D的横坐标为3,即b=3,
    同理,a=3,
    ∴a+b=3+3=6,
    故选:B.
    本题考查的是坐标与图形变化-平移,掌握平移变换与坐标变化之间的规律是解题的关键.
    4、B
    【解析】
    分式有意义时,分母x-1≠0,由此求得x的取值范围.
    【详解】
    依题意得:x-1≠0,
    解得x≠1.
    故选B.
    本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.
    5、A
    【解析】
    由矩形的性质得出∠B=90°,BC=AD=3,由折叠的性质得:AB'=AB=1,当A、B'、C三点共线时,CB'的值最小,由勾股定理得出AC==,得出CB'=AC-AB'=-1.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠B=90°,BC=AD=3,
    由折叠的性质得:AB'=AB=1,
    当A、B'、C三点共线时,CB'的值最小,
    此时AC==,
    ∴CB'=AC-AB'=-1;
    故选:A.
    本题考查了翻折变换的性质、矩形的性质、勾股定理等知识;熟练掌握翻折变换的性质和勾股定理是解题的关键.
    6、A
    【解析】
    如解图所示,根据多边形的外角和即可求出∠5,然后根据平角的定义即可求出结论.
    【详解】
    解:∵∠1=∠2=∠3=∠4=75°,
    ∴∠5=360°﹣75°×4=360°﹣300°=60°,
    ∴∠AED=180°﹣∠5=180°﹣60°=120°.
    故选:A.
    此题考查的是多边形的外角和平角的定义,掌握多边形的外角和都等于360°是解决此题的关键.
    7、D
    【解析】
    y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D
    8、D
    【解析】
    根据余弦的定义计算即可.
    【详解】
    解:如图,
    在Rt△ABC中,,
    故选:D.
    本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、3或
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBD=∠CBD,
    ∴∠FBD=∠FDB,
    ∴FB=FD=11cm,
    ∵AF=5cm,
    ∴AD=16cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=8cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    分两种情况:①当点Q在EC上时,根据PF=EQ可得: 5-t=8-2t,
    解得:t=3;
    ②当Q在BE上时,根据PF=QE可得:5-t=2t-8,
    解得:t=.
    所以,t的值为:t=3或t=.
    故答案为:3或.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.
    10、-1
    【解析】
    根据相反数的性质列出分式方程求解即可.
    【详解】
    ∵分式的值与1互为相反数

    解得
    经检验,当时,,所以是方程的根
    故答案为:.
    本题考查了分式方程的运算问题,掌握分式方程的解法、相反数的性质是解题的关键.
    11、72
    【解析】
    试题解析:观察图形可知,中心角是由五个相同的角组成,
    ∴旋转角度是
    ∴这四次旋转中,旋转角度最小是
    故答案为72.
    12、
    【解析】
    设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
    【详解】
    设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
    所以
    解得,
    所以AE=.
    考点:1.菱形的性质;2.勾股定理.
    13、±1
    【解析】
    试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.
    故答案为±1.
    考点:根的判别式.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) 见解析;(2) DG=DP,理由见解析;(3) 1∶1.
    【解析】
    (1)用SAS证△ABE≌△DAF即可;
    (2)DG=DP,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,先用SAS证△PMG≌△PCQ,得CQ=MG=AG,进一步证明∠DAG=∠DCQ,再用SAS证明△DAG≌△DCQ,得∠ADF=∠CDQ,于是有∠FDQ=90°,进而可得△DPG为等腰直角三角形,由此即得结论;
    (3)延长AE、DC交于点H,由条件CG=BC可证CD=CG=CH,进一步用SAS证△ABE≌△HCE,得BE=CE,因为AF=BE,所以AF:BF=BE:CE=1:1.
    【详解】
    解:(1)证明:正方形ABCD中,
    AB=AD,∠ABE=∠DAF=90°,BE=AF,
    ∴△ABE≌△DAF(SAS)
    ∴AE=DF;
    (2)DG=DP,理由如下:
    如图,连接GP并延长至点Q,使PQ=PG,连接CQ,DQ,
    ∵PM=PC,∠MPG=∠CPQ,
    ∴△PMG≌△PCQ(SAS),
    ∴CQ=MG=AG,∠PGM=∠PQC,
    ∴CQ∥DF,
    ∴∠DCQ=∠FDC=∠AFG,
    ∵∠AFG+∠BAE=90°,∠DAG+∠BAE=90°,
    ∴∠AFG=∠DAG.
    ∴∠DAG=∠DCQ.
    又∵DA=DC,
    ∴△DAG≌△DCQ(SAS).
    ∴∠ADF=∠CDQ.
    ∵∠ADC=90°,
    ∴∠FDQ=90°.
    ∴△GDQ为等腰直角三角形
    ∵P为GQ的中点
    ∴△DPG为等腰直角三角形.
    ∴DG=DP.
    (3)1∶1.
    证明:延长AE、DC交于点H,
    ∵CG=BC,BC=CD,
    ∴CG=CD,∴∠1=∠2.
    ∵∠1+∠H=90°,∠2+∠3=90°,
    ∴∠3=∠H.
    ∴CG=CH.
    ∴CD=CG=CH.
    ∵AB=CD,∴AB=CH.
    ∵∠BAE=∠H,∠AEB=∠HEC,
    ∴△ABE≌△HCE(SAS).
    ∴BE=CE.
    ∵AF=BE,
    ∴AF:BF=BE:CE=1:1.
    本题主要考查了正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质,其中第(1)小题是基础,第(2)(3)两小题探求结论的关键是添辅助线构造全等三角形,从解题过程看,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.
    15、(1)y=x+1;y=;(2)当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.
    【解析】
    (1)把点A、B坐标代入y=kx+b,把点A的坐标代入y=,根据待定系数法即可求得一次函数与反比例函数的解析式;
    (2)联立方程,求得得一次函数与反比例函数的图象交点坐标,然后利用函数图象的位置关系求解.
    【详解】
    (1)∵一次函数y=kx+b(k≠0)经过点A(1,2),点B(0,1),
    ∴,解得k=1,b=1
    ∴一次函数解析式为y=x+1;
    ∵点A(1,2)在反比例函数y=的图象上,
    ∴m=1×2=2,
    ∴反比例函数解析式为y=;
    (2)∵方程组的解为或,
    ∴一次函数与反比例函数的图象交点坐标为(1,2)、(﹣2,﹣1),
    ∴当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.
    本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.
    16、 (1)证明见解析;(2)①四边形ACBF为平行四边形,理由见解析;②EF=1.
    【解析】
    (1)利用SAS证△ABC≌△BAD可得.
    (2)①根据题意知:AC=BD=BF,并由内错角相等可得AC∥BF,所以由一组对边平行且相等的四边形是平行四边形,可得结论;
    ②如图2,作辅助线,证明△ADF是等边三角形,得AD=AE+DE=3+5=8,根据等腰三角形三线合一得AM=DM=4,最后利用勾股定理可得FM和EF的长.
    【详解】
    (1)证明:在△ABC和△BAD中,
    ∵,
    ∴△ABC≌△BAD(SAS),
    ∴∠CBA=∠DAB,
    ∴AE=BE;
    (2)解:①四边形ACBF为平行四边形;
    理由是:由对称得:△DAB≌△FAB,
    ∴∠ABD=∠ABF=∠CAB,BD=BF,
    ∴AC∥BF,
    ∵AC=BD=BF,
    ∴四边形ACBF为平行四边形;
    ②如图2,过F作FM⊥AD于,连接DF,
    ∵△DAB≌△FAB,
    ∴∠FAB=∠DAB=30°,AD=AF,
    ∴△ADF是等边三角形,
    ∴AD=AE+DE=3+5=8,
    ∵FM⊥AD,
    ∴AM=DM=4,
    ∵DE=3,
    ∴ME=1,
    Rt△AFM中,由勾股定理得:FM===4,
    ∴EF==1.
    本题是三角形的综合题,考查了全等三角形的判定的性质、等边三角形的性质和判定,勾股定理,本题中最后一问,有难度,恰当地作辅助线是解题的关键.
    17、(1)见解析;(2)存在,x的值为2或5.
    【解析】
    (1)在△PFA与△ABE中,易得∠PAF=∠AEB及∠PFA=∠ABE=90°;故可得△PFA∽△ABE;
    (2)根据题意:若△EFP∽△ABE,则∠PEF=∠EAB;必须有PE∥AB;分两种情况进而列出关系式.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠PAF=∠AEB.
    ∵∠PFA=∠ABE=90°,
    ∴△PFA∽△ABE.
    (2)
    若△EFP∽△ABE,则∠PEF=∠EAB.
    如图,连接PE,DE,
    ∴PE∥AB.
    ∴四边形ABEP为矩形.
    ∴PA=EB=2,即x=2.
    如图,延长AD至点P,作PF⊥AE于点F,连接PE,
    若△PFE∽△ABE,则∠PEF=∠AEB.
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点.
    ∵AE=,
    ∴EF=AE=.
    ∵,
    ∴PE=5,即x=5.
    ∴满足条件的x的值为2或5.
    此题考查正方形的性质,相似三角形的判定,解题关键在于作辅助线.
    18、 (1)(x-y)²(x-1);(1)(x+1)²(x-1)².
    【解析】
    (1)直接提取公因式(x-y)1,进而分解因式得出答案;
    (1)直接利用平方差公式分解因式,进而结合完全平方公式分解因式即可.
    【详解】
    (1)x(x-y)1-1(y-x)1
    =(x-y)1(x-1);
    (1)(x1+4)1-16x1
    =(x1+4-4x)(x1+4+4x)
    =(x-1)1(x+1)1.
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、且
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.
    【详解】
    要使在实数范围内有意义,
    必须
    所以x≥1且,
    故答案为:x≥1且.
    本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
    20、x≠1
    【解析】
    根据分式有意义的条件,即可求解.
    【详解】
    ∵在函数中,x-1≠0,
    ∴x≠1.
    故答案是:x≠1.
    本题主要考查函数的自变量的取值范围,掌握分式的分母不等于零,是解题的关键.
    21、1
    【解析】
    根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.
    【详解】
    ∵D,E分别是AB,BC的中点,
    ∴AC=2DE=5,AC∥DE,
    AC2+BC2=52+122=169,
    AB2=132=169,
    ∴AC2+BC2=AB2,
    ∴∠ACB=90°,
    ∵AC∥DE,
    ∴∠DEB=90°,又∵E是BC的中点,
    ∴直线DE是线段BC的垂直平分线,
    ∴DC=BD,
    ∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,
    故答案为1.
    本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    22、57.5
    【解析】
    根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
    【详解】
    如图,AE与BC交于点F,
    由BC //ED 得△ABF∽△ADE,
    ∴AB:AD=BF:DE,即5:AD=0.4:5,
    解得:AD=62.5(尺),
    则BD=AD-AB=62.5-5=57.5(尺)
    故答案为57.5.
    本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
    23、-
    【解析】
    根据二次根式有意义的条件,可知2-a>0,解得a<2,即a-2<0,因此可知(a-2)根号外的因式移到根号内后可得(a-2)=.
    故答案为-.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2)见解析.
    【解析】
    (1)由直角三角形的性质可求CD=4=BC,再由直角三角形的性质可求BF的长;
    (2)过点C作CG⊥CF,交DE于点G,通过证明△FBC≌△GDC,可得FC=CG,BF=DG,即可得结论.
    【详解】
    解:(1)正方形ABCD中:,,








    (2)证明:过点C作交DE于G
    ∴ ∴
    又∵ ∴
    在四边形BCDF中




    ∴,
    ∴在中.

    本题考查了正方形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
    25、(1);(2).
    【解析】
    (1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
    (2)拟使用列表法求解,见解析.
    【详解】
    解:(1)小聪想从这4部数学名著中随机选择1部阅读,他选中《九章算术》的概率为;
    (2)将四部名著《周牌算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《周牌算经》为事件M,用列表法列举出从4部名著中选择2部所能产生的全部结果:
    由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即AB,BA,
    ∴P(M)= .
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    26、x=2时,最小值是1.
    【解析】
    先提公因式,再根据“均值不等式”的性质计算.
    【详解】
    根据题意得:x= ,
    解得,x1=2,x2=-2(舍去),
    则当x=2时,代数式2x+取最小值,最小值是1.
    本题考查的是配方法的应用,掌握完全平方公式、“均值不等式”的概念是解题的关键.
    题号





    总分
    得分
    第1部
    第2部
    A
    B
    C
    D
    A
    BA
    CA
    DA
    B
    AB
    CB
    DB
    C
    AC
    BC
    DC
    D
    AD
    BD
    CD

    相关试卷

    福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】:

    这是一份福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】:

    这是一份2024-2025学年福建省龙岩市永定区金丰片数学九年级第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年福建省龙岩市上杭县数学九年级第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map