福建省龙岩新罗区2024-2025学年数学九上开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )
A.24B.16C.D.
2、(4分)、、为三边,下列条件不能判断它是直角三角形的是( )
A.B.,,
C.D.,,(为正整数)
3、(4分)在以下列三个数为边长的三角形中,不能组成直角三角形的是( )
A.4、7、9B.5、12、13C.6、8、10D.7、24、25
4、(4分)一元二次方程的一次项系数为( )
A.1B.C.2D.-2
5、(4分)下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需( )分钟到达终点B.
A.78B.76C.16D.12
7、(4分)如图,中,,的平分线交于点,连接,若,则的度数为
A.B.C.D.
8、(4分)下面式子从左边到右边的变形属于因式分解的是( ).
A.x2-x-2=x(x一1)-2B.
C.(x+1)(x—1)=x2 - 1D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)四边形的外角和等于 .
10、(4分)如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为 时,△BOC与△AOB相似.
11、(4分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.
12、(4分)已知,是一元二次方程的两个实数根,则的值是______.
13、(4分)一次函数的图象与y轴的交点坐标________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知.将他们组合成(A﹣B)÷C或A﹣B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=1.
15、(8分)为了宣传2018年世界杯,实现“足球进校园”的目标,任城区某中学计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
(1)求A,B两种品牌的足球的单价.
(2)学校准备购进这两种品牌的足球共50个,并且B品牌足球的数量不少于A品牌足球数量的4倍,请设计出最省钱的购买方案,求该方案所需费用,并说明理由.
16、(8分)如图,已知和线段a,求作菱形ABCD,使,.(只保留作图痕迹,不要求写出作法)
17、(10分)某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40
(1)这组数据的平均数为 ,中位数为 ,众数为 .
(2)用哪个值作为他们年龄的代表值较好?
18、(10分)为了解市民对“雾霾天气的主要原因”的认识,某调查公司随机抽查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表.
调查结果扇形统计图
请根据图表中提供的信息解答下列问题:
(1)填空:__________,__________.扇形统计图中组所占的百分比为__________%.
(2)若该市人口约有100万人,请你估计其中持组“观点”的市民人数约是__________万人.
(3)若在这次接受调查的市民中,随机抽查一人,则此人持组“观点”的概率是__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
20、(4分)若是关于的一元二次方程的一个根,则____.
21、(4分)计算:=_____.
22、(4分)如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为 .
23、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
25、(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.
26、(12分)仔细阅读下面例题,解答问题:
例题:已知二次三项式有一个因式是,求另一个因式以及的值,
解:设另一个因式为,得: ,
则
解得:
另一个因式为,的值为,
问题:仿照以上方法解答下列问题:
已知二次三项式有一个因式是,求另一个因式以及的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.
【详解】
∵四边形ABCD是菱形,AC=6,BD=4,
∴AC⊥BD,
OA=AC=3,
OB=BD=2,
AB=BC=CD=AD,
∴在Rt△AOB中,AB==,
∴菱形的周长为4.
故选C.
2、C
【解析】
根据三角形内角和定理可得C是否是直角三角形;根据勾股定理逆定理可判断出A、B、D是否是直角三角形.
【详解】
解:A. 即,根据勾股定理逆定理可判断△ABC为直角三角形;
B. ,,,因为,即,,根据勾股定理逆定理可判断△ABC为直角三角形;
C. 根据三角形内角和定理可得最大的角,可判断△ABC为锐角三角形;
D. ,,(为正整数),因为,即,根据勾股定理逆定理可判断△ABC为直角三角形;
故选:C
本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.
3、A
【解析】
根据勾股定理逆定理逐项分析即可.
【详解】
解:A. ∵42+72≠92,∴4、7、9不能组成直角三角形;
B. ∵52+122=132,∴ 5、12、13能组成直角三角形;
C. ∵62+82=102,∴6、8、10能组成直角三角形;
D. ∵72+242=252,∴7、24、25能组成直角三角形;
故选A.
本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.
4、D
【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0.这种形式叫一元二次方程的一般形式.a叫做二次项系数;b叫做一次项系数;c叫做常数项可得答案.
【详解】
解:一元二次方程,则它的一次项系数为-2,
所以D选项是正确的.
本题考查的是一元二次方程,熟练掌握一次项系数是解题的关键.
5、B
【解析】
根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是轴对称图形,是中心对称的图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称的图形,故本选项符合题意;C、是轴对称图形,不是中心对称的图形,故本选项不符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.
故选:B
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合
6、A
【解析】
根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.
【详解】
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
甲的速度是千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得
,
解得x=千米/分钟,
相遇后乙到达A站还需 =2分钟,
相遇后甲到达B站还需分钟,
当乙到达终点A时,甲还需80-2=78分钟到达终点B,
故选:A.
本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.
7、D
【解析】
由平行四边形的对边相互平行和平行线的性质得到∠ABC=80°;然后由角平分线的性质求得∠EBC=∠ABC=40°;最后根据等腰三角形的性质解答.
【详解】
四边形是平行四边形,
,.
.
又,
.
是的平分线,
.
又,
.
.
故选.
考查了平行四边形的性质,此题利用了平行四边形的对边相互平行和平行四边形的对角相等的性质.
8、B
【解析】
根据因式分解的意义求解即可.
【详解】
A、没把多项式转化成几个整式积的形式,故A不符合题意;
B、把多项式转化成几个整式积的形式,故B符合题意;
C、是整式的乘法,故C不符合题意;
D、是整式的乘法,故D不符合题意;
故选B.
本题考查了因式分解的意义,把多项式转化成几个整式积的形式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、360°.
【解析】
解:n(n≥3)边形的外角和都等于360°.
10、(﹣1.5,0),(1.5,0),(﹣6,0)
【解析】
本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.
【详解】
解:∵点C在x轴上,
∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,
若OC与OA对应,则OC=OA=6,C(﹣6,0);
若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).
∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).
故答案为(﹣1.5,0),(1.5,0),(﹣6,0).
考点:相似三角形的判定;坐标与图形性质.
11、1
【解析】
先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.
【详解】
解:在Rt△ABC中,∵∠ABC=30°,
∴AC=AB=5,
∵△ABC沿CB向右平移得到△DEF,
∴AD=BE,ADBE,
∴四边形ABED为平行四边形,
∵四边形ABED的面积等于20,
∴AC•BE=20,即5BE=20,
∴BE=1,即平移距离等于1.
故答案为:1.
本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.
12、1
【解析】
根据一元二次方程的根与系数的关系即可解答.
【详解】
解:根据一元二次方程的根与系数关系可得:
,
所以可得
故答案为1.
本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.
13、 (0,-2)
【解析】
根据一次函数与y轴的交点得横坐标等于0,将x=0代入y=x-2,可得y的值,从而可以得到一次函数y=x-2的图象与y轴的交点坐标.
【详解】
将x=0代入y=x−2,可得y=−2,
故一次函数y=x−2的图象与y轴的交点坐标是(0,−2).
故答案为:(0,-2)
此题考查一次函数图象上点的坐标特征,解题关键在于一次函数与y轴的交点得横坐标等于0
三、解答题(本大题共5个小题,共48分)
14、答案不唯一,如选(A﹣B)÷C,化简得,
【解析】
首先选出组合,进而代入,根据分式运算顺序进而化简,求出即可.
【详解】
选(A﹣B)÷C=(
=[]
当x=1时,原式.
本题考查了分式的化简求值,正确运用分式基本性质是解题的关键.
15、(1)A品牌的足球的单价为40元,B品牌的足球的单价为100元(2)当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元
【解析】
(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列二元一次方程组求解可得;
(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,根据“B品牌足球的数量不少于A品牌足球数量的4倍”列不等式求出a的范围,再由购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000知当a越大,购买的总费用越少,据此可得.
【详解】
解:(1)设A品牌的足球的单价为x元,B品牌的足球的单价为y元,
根据题意,得:
解得:
答:A品牌的足球的单价为40元,B品牌的足球的单价为100元.
(2)设购进A品牌足球a个,则购进B品牌足球(50﹣a)个,
根据题意,得:50﹣a≥4a,
解得:a≤10,
∵购买这两种品牌足球的总费用为40a+100(50﹣a)=﹣60a+5000,
∴当a越大,购买的总费用越少,
所以当a=10,即购买A品牌足球10个,B品牌足球40个,总费用最少,最少费用为4400元.
本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系和不等关系,并据此列出方程或不等式.
16、详见解析
【解析】
作∠DAB=∠ ,在射线AB,射线AD分别截取AB=AD=a,再分别以B,D为圆心a为半径画弧,两弧交于点C,连接CD,BC,四边形ABCD即为所求.
【详解】
如图所示.
本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.
17、(1),17,17;(2)众数.
【解析】
(1)根据平均数、中位数和众数的求法,进行计算,即可得到答案;
(2)因为众数最具有代表性,所以选择众数.
【详解】
解:(1)这组数据的平均数为=,
中位数为=17,
众数为17;
故答案为:,17,17;
(2)用众数作为他们年龄的代表值较好.
本题考查平均数、中位数和众数,解题的关键是掌握平均数、中位数和众数的求法.
18、50 130 16% 28 0.26
【解析】
(1)求得总人数,然后根据百分比的定义即可求得;
(2)利用总人数100万,乘以所对应的比例即可求解;
(3)利用频率的计算公式即可求解.
【详解】
解:(1)总人数是:100÷20%=500(人),则m=500×10%=50(人),
C组的频数n=500﹣100﹣50﹣140﹣80=130(人),
E组所占的百分比是:×100%=16%;
故答案为:50,130,16%;
(2)100×=28(万人);
所以持D组“观点”的市民人数为28万人;
(3)随机抽查一人,则此人持C组“观点”的概率是.
答:随机抽查一人,则此人持C组“观点”的概率是.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力,以及列举法求概率.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.5
【解析】
经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.
【详解】
连接AC、OB,交于D点,作DE⊥OA于E点,
∵四边形OABC为矩形,
∴DE=AB=3,OE=OA=7.5,
∴D(7.5,3),
∵直线恰好将矩形OABC分成面积相等的两部分,
∴直线经过点D,
∴将(7.5,3)代入直线得:
3=×7.5+b,
解得:b=0.5,
故答案为:0.5.
本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.
20、0
【解析】
根据一元二次方程的解即可计算求解.
【详解】
把x=-2代入方程得,解得k=1或0,
∵k2-1≠0,k≠±1,
∴k=0
此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.
21、
【解析】
先通分,再把分子相加减即可.
【详解】
解:原式=
故答案为:
本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
22、1.
【解析】
∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.
又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.
∴△DOE的周长="OD+OE+DE=" OD +(BC+CD)=3+9=1,即△DOE的周长为1.
23、
【解析】
第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.
【详解】
解:第二个矩形的面积为第一个矩形面积的;
第三个矩形的面积是第一个矩形面积的;
…
故第n个矩形的面积为第一个矩形面积的.
又∵第一个矩形的面积为4,
∴第n个矩形的面积为.
故答案为:.
本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)(2)①甲;②乙;③选乙;理由见解析.
【解析】
试题分析:(1)分别根据方差公式、中位数的定义以及算术平均数的计算方法进行计算即可得解;
(2)①在平均数相等的情况下,方差小的成绩稳定,比较方差可得结论;②在平均数相等的情况下,中位数大的成绩好,比较中位数可得结论;③根据数据特征、折线图的趋势和命中9环以上的次数来进行综合判断,继而选出参赛队员.
解:(1)
(2)①甲;②乙;③选乙;
理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙
25、见解析
【解析】
由ASA证明△AOE≌△COF,得出对应边相等EO=FO,证出四边形AFCE为平行四边形,再由FE⊥AC,即可得出结论.
【详解】
解:证明:因为四边形的矩形
,
因为平分
.
,
所以四边形是平行四边形
所以四边形是菱形(对角线互相垂直的平行四边形是菱形)
本题考查了矩形的性质、菱形的判定方法、平行四边形的判定方法、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.
26、另一个因式为,的值为
【解析】
设另一个因式为(x+n),得2x2-5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,可知2n-3=-5,k=3n,继而求出n和k的值及另一个因式.
【详解】
解:设另一个因式为(x+n),得:2x2-5x-k=(2x-3)(x+n)
则2x2-5x-k=2x2+(2n-3)x-3n,
解得:
另一个因式为,的值为,
本题考查因式分解的应用,正确读懂例题,理解如何利用待定系数法求解是解本题的关键.
题号
一
二
三
四
五
总分
得分
组别
观点
频数(人数)
大气气压低,空气不流动
100
底面灰尘大,空气湿度低
汽车尾气排放
工厂造成的污染
140
其他
80
平均数
方差
中位数
甲
1.2
乙
7
7.5
福建省福州市五校联考2024-2025学年数学九上开学学业质量监测试题【含答案】: 这是一份福建省福州市五校联考2024-2025学年数学九上开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建龙岩市新罗区2024年九上数学开学质量检测模拟试题【含答案】: 这是一份福建龙岩市新罗区2024年九上数学开学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届福建省龙岩市第五中学数学九上开学学业质量监测模拟试题【含答案】: 这是一份2025届福建省龙岩市第五中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。