|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】
    立即下载
    加入资料篮
    福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】01
    福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】02
    福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】

    展开
    这是一份福建省泉州市2025届九上数学开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知4<m<5,则关于x的不等式组的整数解共有( )
    A.1个B.2个C.3个D.4个
    2、(4分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
    A.13B.14C.15D.16
    3、(4分)若分式的值为0,则x的值是( )
    A.0B.1C.0或1D.0或1或-1
    4、(4分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
    A.15B.18C.21D.24
    5、(4分)矩形各内角的平分线能围成一个( )
    A.矩形B.菱形C.等腰梯形D.正方形
    6、(4分)若,则的值为( )
    A.B.C.D.
    7、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③ . 其中不正确的结论有( )
    A.0个B.1个C.2个D.3个
    8、(4分)某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)自2019年5月30日万州牌楼长江大桥正式通车以来,大放光彩,引万人驻足.市民们纷纷前往打卡、拍照留念,因此牌楼长江大桥成为了万州网红打卡地.周末,小棋和小艺两位同学相约前往参观,小棋骑自行车,小艺步行,她们同时从学校出发,沿同一条路线前往,出发一段时间后小棋发现东西忘了,于是立即以原速返回到学校取,取到东西后又立即以原速追赶小艺并继续前往,到达目的地后等待小艺一起参观(取东西的时间忽略不计),在整个过程两人保持匀速,如图是两人之间的距离与出发时间之间的函数图象如图所示,则当小棋到达目的地时,小艺离目的地还有______米.
    10、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
    11、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
    12、(4分)四边形的外角和等于 .
    13、(4分)若方程x2﹣3x﹣1=0的两根为x1、x2,则 的值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小王开车从甲地到乙地,去时走A线路,全程约100千米,返回时走B路线,全程约60千米.小王开车去时的平均速度比返回时的平均速度快20千米/小时,所用时间却比返回时多15分钟.若小王返回时的平均车速不低于70千米/小时,求小王开车返回时的平均速度.
    15、(8分)阅读下列材料,并解爷其后的问题:
    我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且
    (1)在图1中,若的面积为15,则的面积为___________;
    (2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;
    (3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.
    16、(8分)如图,在平行四边形ABCD中,AB<BC.
    (1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);
    (2)若BC=8,CD=5,则CE= .
    17、(10分)已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B
    (,).
    (1)求这两个函数的表达式;
    (2)观察图象,当>0时,直接写出>时自变量的取值范围;
    (3)如果点C与点A关于轴对称,求△ABC的面积.
    18、(10分)本题有许多画法,你不妨试一试:如图所示的是8的正方形网格,A、B两点均在格点上,现请你在下图中分别画出一个以A、B、C、D为顶点的菱形(可包含正方形),要求:(1)C、D也在格点上;(2)只能使用无刻度的直尺;(3)所画的三个菱形互不全等。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.
    20、(4分)计算的结果是______________。
    21、(4分)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.
    那么,其中最喜欢足球的学生数占被调查总人数的百分比为______%.
    22、(4分)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是__________.
    23、(4分)__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)先化简,再求值:,其中x=2019.
    25、(10分)某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.
    (1)该网店共有几种进货方案?
    (2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值
    26、(12分)在平面直角坐标系中,一次函数的图象与轴负半轴交于点,与轴正半轴交于点,点为直线上一点,,点为轴正半轴上一点,连接,的面积为1.
    (1)如图1,求点的坐标;
    (2)如图2,点分别在线段上,连接,点的横坐标为,点的横坐标为,求与的函数关系式(不要求写出自变量的取值范围);
    (3)在(2)的条件下,如图3,连接,点为轴正半轴上点右侧一点,点为第一象限内一点,,,延长交于点,点为上一点,直线经过点和点,过点作,交直线于点,连接,请你判断四边形的形状,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.
    【详解】
    不等式组
    由①得x<m;
    由②得x>2;
    ∵m的取值范围是4<m<5,
    ∴不等式组的整数解有:3,4两个.
    故选B.
    本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.
    2、D
    【解析】
    先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.
    【详解】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵∠BAD的平分线交BC于点E,
    ∴∠DAE=∠BAE,
    ∴∠BAE=∠BEA,
    ∴AB=BE,同理可得AB=AF,
    ∴AF=BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=AF,
    ∴四边形ABEF是菱形,
    ∴AE⊥BF,OA=OE,OB=OF=BF=6,
    ∴OA==8,
    ∴AE=2OA=16.
    故选D.
    本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.
    3、A
    【解析】
    分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    ∵=0,
    ∴x−x=0,即x(x−1)=0,x=0或x=1,
    又∵x−1≠0,
    ∴x≠±1,综上得,x=0.
    故选A.
    此题考查分式的值为零的条件,解题关键在于掌握运算法则
    4、A
    【解析】
    此题涉及的知识点是平行四边形的性质.根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=BC,所以易求△DOE的周长.
    【详解】
    解:∵▱ABCD的周长为32,
    ∴2(BC+CD)=32,则BC+CD=1.
    ∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,
    ∴OD=OB=BD=2.
    又∵点E是CD的中点,DE=CD,
    ∴OE是△BCD的中位线,∴OE=BC,
    ∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=2+9=3,
    即△DOE的周长为3.
    故选A
    此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.
    5、D
    【解析】
    根据矩形的性质及角平分线的性质进行分析即可.
    【详解】
    矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°
    又知两条角平分线与矩形的一边构成等腰直角三角形,
    所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.
    故选D.
    此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角
    6、C
    【解析】
    首先设,将代数式化为含有同类项的代数式,即可得解.
    【详解】



    故答案为C.
    此题主要考查分式计算,关键是设参数求值.
    7、B
    【解析】
    先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
    【详解】
    ∵BD是正方形ABCD的对角线,
    ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
    ∵BE=BC,
    ∴AB=BE,
    ∵BG⊥AE,
    ∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
    在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
    ∵∠AGH=90°,
    ∴∠DAE=∠ABH=22.5°,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴∠DAE=∠DCE=22.5°,
    ∴∠ABH=∠DCF,
    在Rt△ABH和Rt△DCF中

    ∴Rt△ABH≌Rt△DCF,
    ∴AH=DF,∠CFD=∠AHB=67.5°,
    ∵∠CFD=∠EAF+∠AEF,
    ∴67.5°=22.5°+∠AEF,
    ∴∠AEF=45°,故①②正确;
    如图,连接HE,
    ∵BH是AE垂直平分线,
    ∴AG=EG,
    ∴S△AGH=S△HEG,
    ∵AH=HE,
    ∴∠AHG=∠EHG=67.5°,
    ∴∠DHE=45°,
    ∵∠ADE=45°,
    ∴∠DEH=90°,∠DHE=∠HDE=45°,
    ∴EH=ED,
    ∴△DEH是等腰直角三角形,
    ∵EF不垂直DH,
    ∴FH≠FD,
    ∴S△EFH≠S△EFD,
    ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
    故选B.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
    8、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、400
    【解析】
    设小祺的速度为x米/分钟,小艺的速度为y米/分钟,由题意列方程组,可求出小祺的速度与小艺的速度.
    【详解】
    设小祺的速度为x米/分钟,小艺的速度为y米/分钟
    则有:

    ∴设小祺的速度为130米/分钟,小艺的速度为70米/分钟
    ∴当小祺到达目的地时,小艺离目的地的距离=米
    故答案为:400米
    本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解,再找出对应数量关系.
    10、
    【解析】
    平移时k的值不变,只有b发生变化.
    【详解】
    原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
    那么新直线的k=2,b=0+1=1,
    ∴新直线的解析式为y=2x+1.
    故答案为:y=2x+1.
    本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
    11、(8,0)
    【解析】
    连接任意两对对应点,看连线的交点为那一点即为位似中心.
    【详解】
    解:连接BB1,A1A,易得交点为(8,0).
    故答案为:(8,0).
    用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.
    12、360°.
    【解析】
    解:n(n≥3)边形的外角和都等于360°.
    13、-3
    【解析】
    解:因为的两根为x1,x2,
    所以
    =
    故答案为:-3
    三、解答题(本大题共5个小题,共48分)
    14、80千米/小时
    【解析】
    设小王开车返回时的平均速度为x千米/小时,根据题意列出分式方程,然后求解得到x的值,再进行验根,得到符合题意的值即可.
    【详解】
    解:设小王开车返回时的平均速度为x千米/小时,



    经检验:都是原方程的根,但是,不符合题意,应舍去.
    答: 小王开车返回时的平均速度是80千米/小时.
    本题主要考查分式方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系的量列出方程,然后求解,验根得到符合题意的解即可.
    15、(1);(2)见解析;(3)1.
    【解析】
    (1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;
    (2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;
    (3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD= ,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.
    【详解】
    (1)解:∵D、E、F分别是△ABC三边的中点,
    则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
    ∴△DEF的面积=△ABC的面积=;
    故答案为;
    (2)证明:连接BD,如图2所示:
    ∵E、F、G、H分别是AB、BC、CD、AD的中点,
    ∴EH是△ABD的中位线,FG是△BCD的中位线,
    ∴EH∥BD,EH=BD,FG∥BD,FG=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形;
    (3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,
    ∴EH是△ABD的中位线,FG是△BCD的中位线,
    ∴EH∥BD,EH=BD=,FG∥BD,FG=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    同理:EF∥AC,EF=AC=2,
    ∵AC⊥BD,
    ∴EH⊥EF,
    ∴四边形EFGH是矩形,
    ∴四边形EFGH的面积=EH×EF=×2=1.
    故答案为(1);(2)见解析;(3)1.
    本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.
    16、(1)见解析;(2)1.
    【解析】
    根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
    【详解】
    (1)如图所示:E点即为所求.
    (2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
    ∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
    考点:作图—复杂作图;平行四边形的性质
    17、(1)反比例函数的表达式为;一次函数的表达式为(2)0<<1;(3)4
    【解析】
    (1)根据点A的坐标求出反比例函数的解析式为,再求出B的坐标是(-2,-2),利用待定系数法求一次函数的解析式.
    (2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出当>0时,一次函数的值小于反比例函数的值x的取值范围或0<x<1.
    (3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.
    【详解】
    解:(1)∵点A(1,2)在的图象上,∴=1×2=2.
    ∴反比例函数的表达式为
    ∵点B在的图象上,∴.∴点B(-2,-2).
    又∵点A、B在一次函数的图象上,
    ∴,解得.
    ∴一次函数的表达式为.
    (2)由图象可知,当 0<<1时,>成立
    (3)∵点C与点A关于轴对称,∴C(1,-2).
    过点B作BD⊥AC,垂足为D,则D(1,-5).
    ∴△ABC的高BD=1=3,底为AC=2=3.
    ∴S△ABC=AC·BD=×3×3=4.
    18、见解析
    【解析】
    直接利用菱形的定义得出符合题意的图形即可.
    【详解】
    解:由题知,再根据四边相等的四边形为菱形,作出其他边即可,如下图所示:

    此题主要考查了应用设计与作图以及菱形的性质,正确掌握菱形的性质是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.
    【详解】
    根据折叠的性质知:BP=BC,∠PBQ=∠CBQ
    ∴BN=BC=BP
    ∵∠BNP=90°
    ∴∠BPN=1°
    ∴∠PBQ=×60°=1°.
    故答案是:1.
    已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.
    20、
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    解:原式
    故答案为:
    本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则
    21、1
    【解析】
    依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
    【详解】
    解:∵被调查学生的总数为10÷20%=50人,
    ∴最喜欢篮球的有50×32%=16人,
    则最喜欢足球的学生数占被调查总人数的百分比= ×100%=1%.
    故答案为:1.
    本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    22、1
    【解析】
    试题分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.
    试题解析:∵CE∥BD,DE∥AC,
    ∴四边形CODE是平行四边形,
    ∵四边形ABCD是矩形,
    ∴AC=BD=4,OA=OC,OB=OD,
    ∴OD=OC=AC=2,
    ∴四边形CODE是菱形,
    ∴四边形CODE的周长为:4OC=4×2=1.
    考点: 1.菱形的判定与性质;2.矩形的性质.
    23、
    【解析】
    把变形为,逆用积的乘方法则计算即可.
    【详解】
    原式=
    =
    =.
    故答案为:.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    二、解答题(本大题共3个小题,共30分)
    24、x+2,2021
    【解析】
    先把除法转化为乘法,约分化简,然后把x=2019代入计算即可.
    【详解】
    原式=
    =x+2,
    当x=2019时,
    原式=2019+2=2021.
    本题考查了分式的计算和化简.解决这类题目关键是把握好通分与约分,分式加减的本质是通分,乘除的本质是约分.同时注意在进行运算前要尽量保证每个分式最简.
    25、(1)3种;(2)W=,最大为1390元
    【解析】
    (1)设购进甲种羽毛球筒,根据题意可列出关于m的不等式组,则可求得m的取值范围,再由m为整数即可求得进货方案;
    (2)用m表示出W,可得到W关于m的一次函数,再利用一次函数的性质即可求得答案.
    【详解】
    解:(1)设购进甲种羽毛球筒,则乙种羽毛球()筒,
    由题意,得,
    解得.
    又∵是整数,
    ∴m=76,77,78共三种进货方案.
    (2)由题意知,甲利润:元/筒,乙利润:元/筒,

    ∵随增大而增大
    ∴当时,(元).
    即利润的最大值是1390元.
    本题考查了一元一次不等式组的应用和一次函数的应用,弄清题意列出不等式组和一次函数解析式是解题的关键.
    26、(1)B(6,0);(2)d=;(3)四边形是矩形,理由见解析
    【解析】
    (1)作DL⊥y轴垂足为L点,DI⊥AB垂足为I,证明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB•DI=1,求得OB=AB−AO=8−2=6,即可求B坐标;
    (2)设∠MNB=∠MBN=α,作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;证明四边形MPKQ为矩形,再证明△MNP≌△MQB,求出BD的解析式为y=−3x+18,MQ=d,把y=d代入y=−3x+18得d=−3x+18,表达出OQ的值,再由OQ=OK+KQ=t+d,可得d=−;
    (3)作NW⊥AB垂足为W,证明△ANW≌△CAO,根据边的关系求得N(4,2);延长NW到Y,使NW=WY,作NS⊥YF,再证明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;设YS=a,FY=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);设GF交y轴于点T,设FN的解析式为y=px+q (p≠0)把F(10,0)N(4,2)代入即可求出直线FN的解析式,联立方程组得到G点坐标;把G点代入得到y=x+3,可知R(4,0),证明△GRA≌△EFR,可得四边形AGFE为平行四边形,再由∠AGF=180°−∠CGF=90°,可证明平行四边形AGFE为矩形.
    【详解】
    解:(1)令x=0,y=6,令y=0,x=−2,
    ∴A(−2,0),B(0,6),
    ∴AO=2,CO=6,
    作DL⊥y轴垂足为L点,DI⊥AB垂足为I,
    ∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,
    ∴△DLC≌△AOC(AAS),
    ∴DL=AO=2,
    ∴D的横坐标为2,
    把x=2代入y=3x+6得y=12,
    ∴D(2,12),
    ∴DI=12,
    ∵S△ABD=AB•DI=1,
    ∴AB=8;
    ∵OB=AB−AO=8−2=6,
    ∴B(6,0);
    (2)∵OC=OB=6,
    ∴∠OCB=∠CBO=45°,
    ∵MN=MB,
    ∴设∠MNB=∠MBN=α,
    作NK⊥x轴垂足为K,MQ⊥AB垂足为Q,MP⊥NK,垂足为P;
    ∴∠NKB=∠MQK=∠MPK=90°,
    ∴四边形MPKQ为矩形,
    ∴NK∥CO,MQ=PK;
    ∵∠KNB=90°−45°=45°,
    ∴∠MNK=45°+α,∠MBQ=45°+α,
    ∴∠MNK=∠MBQ,
    ∵MN=MB,∠NPM=∠MQB=90°,
    ∴△MNP≌△MQB(AAS),
    ∴MP=MQ;
    ∵B(6,0),D(2,12),
    ∴设BD的解析式为y=kx+b(k≠0),
    ∴,解得:k=-3,b=18,
    ∴BD的解析式为y=−3x+18,
    ∵点M的纵坐标为d,
    ∴MQ=MP=d,把y=d代入y=−3x+18得d=−3x+18,
    解得x=,
    ∴OQ=;
    ∵N的横坐标为t,
    ∴OK=t,
    ∴OQ=OK+KQ=t+d,
    ∴=t+d,
    ∴d=;
    (3)作NW⊥AB垂足为W,
    ∴∠NWO=90°,
    ∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,
    ∵∠ACO=∠NAO,
    ∴∠ACN=∠ANC,
    ∴AC=AN,
    又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,
    ∴△ANW≌△CAO(AAS),
    ∴AO=NW=2,
    ∴WB=NW=2,
    ∴OW=OB−WB=6−2=4,
    ∴N(4,2);
    延长NW到Y,使NW=WY,
    ∴△NFW≌△YFW(SAS)
    ∴NF=YF,∠NFW=∠YFW,
    又∵∠HFN=2∠NFO,
    ∴∠HFN=∠YFN,
    作NS⊥YF,
    ∵∠FH⊥NH,
    ∴∠H=∠NSF=90°,
    ∵FN=FN,
    ∴△FHN≌△FSN(AAS),
    ∴SF=FH=,NY=2+2=4,
    设YS=a,FY=FN=a+,
    在Rt△NYS和Rt△FNS中:NS2=NY2−YS2;NS2=FN2−FS2;NY2−YS2=FN2−FS2,
    ∴42−a2=(a+)2-()2,
    解得a=
    ∴FN=;
    在Rt△NWF中WF=,
    ∴FO=OW+WF=4+6=10,
    ∴F(10,0),
    ∴AW=AO+OW=2+4=6,
    ∴AW=FW,
    ∵NW⊥AF,
    ∴NA=NF,
    ∴∠NFA=∠NAF,
    ∵∠ACO=∠NAO,
    ∴∠NFA=∠ACO,
    设GF交y轴于点T,∠CTF=∠ACO+∠CGF=∠COF+∠GFO,
    ∴∠CGF=∠COF=90°,
    设FN的解析式为y=px+q (p≠0),把F(10,0)N(4,2)代入y=px+q
    得,解得,
    ∴,
    ∴联立,解得:,
    ∴,
    把G点代入y=mx+3,得,得m=,
    ∴y=x+3,
    令y=0得0=x+3,x=4,
    ∴R(4,0),
    ∴AR=AO+OR=2+4=6,RF=OF−OR=10−4=6,
    ∴AR=RF,
    ∵FE∥AC,
    ∴∠FEG=∠AGE,∠GAF=∠EFA,
    ∴△GRA≌△EFR(AAS),
    ∴EF=AG,
    ∴四边形AGFE为平行四边形,
    ∵∠AGF=180°−∠CGF=180°−90°=90°,
    ∴平行四边形AGFE为矩形.
    本题是一次函数的综合题;灵活应用全等三角形的判定和性质以及勾股定理,熟练掌握平行四边形和矩形的判定,会待定系数法求函数解析式是解题的关键.
    题号





    总分
    得分
    类别
    A
    B
    C
    D
    E
    F
    类型
    足球
    羽毛球
    乒乓球
    篮球
    排球
    其他
    人数
    10
    4
    6
    2
    相关试卷

    福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】: 这是一份福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省泉州市德化县2024年九上数学开学教学质量检测模拟试题【含答案】: 这是一份福建省泉州市德化县2024年九上数学开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安庆市2024年九上数学开学达标检测模拟试题【含答案】: 这是一份安庆市2024年九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map