福建省泉州市第八中学2024-2025学年数学九上开学检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:
设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是( )
A.B.
C.D.
2、(4分)下列多项式中,不能运用公式法进行因式分解的是( )
A.x2+2xy+y2B.x2﹣9C.m2﹣n2D.a2+b2
3、(4分)一元二次方程的解是( )
A.0B.4C.0或4D.0或-4
4、(4分)一次函数是(是常数,)的图像如图所示,则不等式的解集是( )
A.B.C.D.
5、(4分)如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为( )
A.1B.C.D.
6、(4分)如果不等式(a+1)x<a+1的解集为x>1,那么a的取值范围是( )
A.a<1B.a<﹣1C.a>1D.a>﹣1
7、(4分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:
则这四人中成绩发挥最稳定的是( )
A.甲B.乙C.丙D.丁
8、(4分)若二次根式在实数范围内有意义,则a的取值范围是( )
A.B.C.a>1D.a<1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简的结果是_______.
10、(4分)若三角形的一边长为,面积为,则这条边上的高为______.
11、(4分)已知一个多边形的每个内角都是,则这个多边形的边数是_______.
12、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
13、(4分)在矩形中,,,以为边在矩形外部作,且,连接,则的最小值为___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)以下是八(1)班学生身高的统计表和扇形统计图,请回答以下问题:
(1)求出统计表和统计图缺的数据.
(2)八(1)班学生身高这组数据的中位数落在第几组?
(3)如果现在八(1)班学生的平均身高是1.63m,已确定新学期班级转来两名新同学,新同学的身高分别是1.54m和1.77m,那么这组新数据的中位数落在第几组?
15、(8分)计算:
(1)5÷-3+2;
(2)-a2+3a
16、(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点
(1)求证:四边形是菱形
(2)若,求菱形的面积
17、(10分)阅读材料:
关于的方程:
的解为:,
(可变形为)的解为:,
的解为:,
的解为:,
…………
根据以上材料解答下列问题:
(1)①方程的解为 .
②方程的解为 .
(2)解关于方程:
① ()
②()
18、(10分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示.
(1)图象表示了哪两个变量的关系?
(2)10时和11时,他分别离家多远?
(3)他最初到达离家最远的地方是什么时间?离家多远?
(4)11时到13时他行驶了多少千米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____
20、(4分)如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是 度.
21、(4分)一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.
22、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
23、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形中,,,、分别是、上的点,且,连接交于.
(1)求证:;
(2)若,延长交的延长线于,当,求的长.
25、(10分)积极推行节能减排,倡导绿色出行,“共享单车”、共享助力车”先后上市,为人们出行提供了方便.某人去距离家千米的单位上班,骑“共享助力车”可以比骑“共享单车”少用分钟,已知他骑“共享助力车”的速度是骑“共享单车”的倍,求他骑“共享助力车”上班需多少分钟?
26、(12分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平均数和方差的定义分别计算可得.
【详解】
解:==55,
==55,
则=×[(58-55)2+2×(53-55)2+(51-55)2+(60-55)2]=11.6,
=×[(54-55)2+(53-55)2+(56-55)2+(55-55)2+(57-55)2]=2,
故选:B.
本题主要考查了方差的计算,熟记方差的计算公式是解决此题的关键.
2、D
【解析】
各项分解因式,即可作出判断.
【详解】
A、原式=(x+y)2,不符合题意;
B、原式=(x+3)(x-3),不符合题意;
C、原式=(m+n)(m-n),不符合题意;
D、原式不能分解因式,符合题意,
故选D.
此题考查了因式分解-运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.
3、C
【解析】
对左边进行因式分解,得x(x-1)=0,进而用因式分解法解答.
【详解】
解:因式分解得,x(x-1)=0,
∴x=0或x-1=0,
∴x=0或x=1.
故选C.
本题考查了用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简单方法.但在解决类似本题的题目时,往往容易直接约去一个x,而造成漏解.
4、C
【解析】
根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),得到当x>2时,y<1,即可得到答案.
【详解】
解:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),
当x>2时,y<1.
故答案为:x>2.
故选:C.
本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.
5、C
【解析】
利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.
【详解】
解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,
所以阴影部分的面积为.
故选:C.
6、B
【解析】
(a+1)x<a+1,
当a+1<0时x>1,
所以a+1<0,解得a<-1,
故选B.
【点睛】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.
7、B
【解析】
根据方差的定义,方差越小数据越稳定,对题目进行分析即可得到答案.
【详解】
因为S甲2>S丁2>S丙2>S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙.故选:B.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
8、A
【解析】
分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
详解:由题意得:a-1≥0,
解得:a≥1,
故选A.
点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
根据算术平方根的定义解答即可.
【详解】
=4.
故答案为:4.
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.
10、4
【解析】
利用面积公式列出关系式,将已知面积与边长代入即可求出高.
【详解】
解:根据题意得:÷×2=4.
此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
11、18
【解析】
首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.
【详解】
解:多边形每一个内角都等于
多边形每一个外角都等于
边数
故答案为
此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补,外角和为360°.
12、2
【解析】
根据题意先确定x的值,再根据中位数的定义求解.
【详解】
解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为2,根据题意得:
解得x=2,
将这组数据从小到大的顺序排列1,2,2,2,12,
处于中间位置的是2,
所以这组数据的中位数是2.
故答案为2.
本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
13、
【解析】
分析:由S△ABP=AB•h=15,得出三角形的高h=5,在直线AB外作直线l∥AB,且两直线间的距离为5,延长DA至M使AM=10,则M、A关于直线l对称,连接CM,交直线l于P,连接AP、BP,则S△ABP=15,此时AP+CP=CM,根据两点之间线段最短可知AP+CP的最小值为CM;然后根据勾股定理即可求得.
详解;∵在矩形ABCD中,AB=6,BC=8,
S△ABP=AB•h=15,
∴h=5,
在直线AB外作直线l∥AB,且两直线间的距离为5,延长DA至M使AM=10,则M、A关于直线l对称,连接CM,交直线l于P,连接AP、BP,则S△ABP=15,此时AP+CP=CM,根据两点之间线段最短可知AP+CP的最小值为CM;
∵AD=8,AM=10,
∴DM=18,
∵CD=6,
∴CM=,
∴AP+CP的最小值为.
故答案为.
点睛:本题考查了轴对称-最短路线问题以及勾股定理的应用,根据题意作出点E是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)第二组4,第四组18,第三组38%,第五组16%,(2)中位数落在第四组;(3)中位数落在第四组.
【解析】
(1)先用第三、五组的人数和除以对应的百分比求出总人数,再用总人数分别乘以第二、四组的百分比求得其人数,根据百分比的概念求出第三、五组的百分比可得答案;
(2)根据中位数的概念求解可得;
(3)根据中位数的概念求解可得.
【详解】
(1)由图知,第一组占2%,所以,总人数:=50,
第二组:8%×50=4,
第四组:50-1-4-19-8=18,
第三组:=38%,第五组:=16%,
(2)八(1)班学生身高这组数据的中位数落在第四组;
(3)转来两名新同学后,共有52名同学,中位数是第26、27名的平均数,
所以,中位数落在第四组。
本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
15、(1)8;(2)
【解析】
(1)先算除法,然后化简各二次根式,最后合并同类二次根式;
(2)先化简各二次根式,再合并同类二次根式.
【详解】
解:(1)原式=5﹣+4
=8.
(2)原式=
=.
本题考查了二次根式的混合运算,先化简,再合并同类二次根式,注意选择合适的方法简算.
16、(1)见解析(2)10
【解析】
(1)先证明,得到,,再证明四边形是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到,即可证明四边形是菱形。
(2)连接,证明四边形是平行四边形,得到,利用菱形的求面积公式即可求解。
【详解】
(1)证明: ∵,∴,
∵是的中点,是边上的中线,∴,
在和中,
,
∴,∴.
∵,∴.
∵,∴四边形是平行四边形,
∵,是的中点,是的中点,
∴,∴四边形是菱形;
(2)如图,连接,
∵,
∴四边形是平行四边形,∴,
∵四边形是菱形,∴.
本题主要考查全等三角形的应用,菱形的判定定理以及菱形的性质,熟练掌握菱形的的判定定理和性质是解此题的关键。
17、(1)①,;②,;(2)①,;②,.
【解析】
试题分析:(1)①令第一个方程中的a=2即可得到答案;
②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;
(2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;
②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.
试题解析:
解:(1)①由第一个方程规律可得:x1=2,x2=;
②根据第一个方程规律可得:x-1=3或x-1=,
∴x1=4,x2=;
(2)①方程两边减1得:(x-1)+=(a-1)+ ,
∴x-1=a-1或x-1=,
∴:x1=a,x2=;
②方程两边减2得:(x-2)+=(a-2)+ ,
∴∴x-2=a-2或x-2=,
∴:x1=a,x2=.
点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.
18、(1)图象表示离家距离与时间之间的关系;(2)10时和11时,他分别离家15千米、20千米;(3)他最初到达离家最远的地方是13时,离家30千米;(4)11时到13时他行驶了10千米.
【解析】
(1)根据函数图像的变量之间关系即可写出;
(2)在函数图像直接可以看出;
(3)在函数图像直接可以看出;
(4)在函数图像得到数据进行计算即可.
【详解】
解:(1)图象表示离家距离与时间之间的关系;
(2)10时和11时,他分别离家15千米、20千米;
(3)他最初到达离家最远的地方是13时,离家30千米;
(4)11时到13时他行驶了:千米.
此题主要考查函数图像的信息识别,解题的关键是熟知函数图像中各点的含义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.
【详解】
∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,
∴DF为三角形ABC的中位线,
∴DE∥BC,DF=BC,
又∠ADF=90°,
∴∠C=∠ADF=90°,
又BE⊥DE,DE⊥AC,
∴∠CDE=∠E=90°,
∴四边形BCDE为矩形,
∵BC=2,∴DF= BC=1,
在Rt△ADF中,∠A=30°,DF=1,
∴tan30°= ,即AD= ,
∴CD=AD=,
则矩形BCDE的面积S=CD⋅BC=2.
故答案为2
此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形
20、144
【解析】
连接OE,
∵∠ACB=90°,∴A,B,C在以点O为圆心,AB为直径的圆上,
∴点E,A,B,C共圆,
∵∠ACE=3°×24=72°,∴∠AOE=2∠ACE=144°,
∴点E在量角器上对应的读数是:144°,
故答案为144.
21、1
【解析】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.
【详解】
设小明答对的题数是x道,则答错或没答的为(20-x)道,根据题意可得:
5x-2(20-x)≥60,
解得:x≥14,
∵x为整数,
∴x的最小值为1.
故答案是:1.
考查了一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.
22、
【解析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.
【详解】
解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=
∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.
故答案为:.
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.
23、
【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
【详解】
解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.
故答案为.
此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)3
【解析】
(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;
(2)证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.
【详解】
解:(1)证明:∵四边形是平行四边形
∴
∴
在与中,
∵
∴
∴
(2)∵
∴
∵
∴
∴
∵
∴
∴
∴
∴
由(1)可知,
∴
∴.
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.
25、20分钟
【解析】
他骑“共享助力车”上班需x分钟,根据骑“共享助力车”的速度是骑“共享单车”的倍列分式方程解得即可.
【详解】
设他骑“共享助力车”上班需x分钟,
,
解得x=20,
经检验,x=20是原分式方程的解,
答:他骑“共享助力车”上班需20分钟.
此题考查分式方程的实际应用,正确理解题意是解题的关键.
26、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.
【解析】
试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法分别得出即可;
(3)利用(2)的点的坐标以及结合得出函数图象得出答案.
解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;
(2)由题意可得:当10x+150=20x,
解得:x=15,则y=300,
故B(15,300),
当y=10x+150,x=0时,y=150,故A(0,150),
当y=10x+150=600,
解得:x=45,则y=600,
故C(45,600);
(3)如图所示:由A,B,C的坐标可得:
当0<x<15时,普通消费更划算;
当x=15时,银卡、普通票的总费用相同,均比金卡合算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡、银卡的总费用相同,均比普通票合算;
当x>45时,金卡消费更划算.
【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
平均数(环)
9. 3
9. 3
9. 3
9. 3
方差
0. 025
0. 015
0. 035
0. 023
福建省泉州市永春第二中学2024-2025学年九上数学开学预测试题【含答案】: 这是一份福建省泉州市永春第二中学2024-2025学年九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市泉港区2024-2025学年九上数学开学经典试题【含答案】: 这是一份福建省泉州市泉港区2024-2025学年九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省泉州市惠安科山中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】: 这是一份福建省泉州市惠安科山中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。