终身会员
搜索
    上传资料 赚现金

    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】

    立即下载
    加入资料篮
    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】第1页
    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】第2页
    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】

    展开

    这是一份福建省泉州市港泉区2024年数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列说法中正确的是( )
    A.有一个角是直角的四边形是矩形
    B.两条对角线互相垂直的四边形是菱形
    C.两条对角线互相垂直平分的四边形是正方形
    D.两条对角线相等的菱形是正方形
    2、(4分)要使二次根式有意义,则x的取值范围是( )
    A..B..C..D..
    3、(4分)函数的自变量取值范围是( )
    A.x≠0B.x>﹣3C.x≥﹣3且x≠0D.x>﹣3且x≠0
    4、(4分)下列变形不正确的是( )
    A.B.C.D.
    5、(4分)若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
    A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
    6、(4分)如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为( )
    A.2B.4C.4D.8
    7、(4分)点(﹣2,﹣3)关于原点的对称点的坐标是( )
    A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)
    8、(4分)分式方程有增根,则的值为
    A.0和3B.1C.1和D.3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为__________.
    10、(4分)如图,A、B的坐标分别为(1,0)、(0,2),若线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a-b的值为__.
    11、(4分)课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米,围成苗圃园的面积为72平方米,设这个苗圃园垂直于墙的一边长为x米.可列方程为_____.
    12、(4分)方程的解是__________.
    13、(4分)在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在直角坐标系中,,,是线段上靠近点的三等分点.
    (1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;
    (2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
    15、(8分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.
    16、(8分)计算
    (1)计算:
    (2)分解因式:
    17、(10分)已知,如图,,求证:.
    证明:∵
    ∴________________( )
    ∴________________( )
    又∵
    ∴________________( )
    ∴( )
    18、(10分)如图,平行四边形的两条对角线相交于点、分别是的中点,过点作任一条直线交于点,交于点,求证:
    (1) ;
    (2) .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算的结果等于_______.
    20、(4分)如图,在正方形中,是边上的点.若的面积为,,则的长为_________.
    21、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.
    22、(4分)在比例尺1∶8000000的地图上,量得太原到北京的距离为6.4厘米,则太原到北京的实际距离为公里。
    23、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)2019车8月8日至18日,第十八届“世警会”首次来到亚洲在成都举办武侯区以相关事宜为契机,进一步改善区域生态环境.在天府吴园道部分地段种植白芙蓉和醉芙蓉两种花卉.经市场调查,种植费用y(元)与种植面积x(m2)之间的函数关系如图所示.
    (1)请直接写出两种花卉y与x的函数关系式;
    (2)白芙蓉和醉芙蓉两种花卉的种植面积共1000m2,若白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,那么应该怎样分配两种花卉的种植面积才能使种植总费用最少?
    25、(10分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.
    26、(12分)(1)分解因式:;
    (2)化简:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.
    【详解】
    A. 有一个角是直角的四边形是矩形,错误;
    B. 两条对角线互相垂直的四边形是菱形,错误;
    C. 两条对角线互相垂直平分的四边形是正方形,错误;
    D. 两条对角线相等的菱形是正方形,正确.
    故选D.
    本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.
    2、C
    【解析】
    根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【详解】
    解:根据题意得:x-3≥0,
    解得,.
    故选:C.
    本题考查二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
    3、B
    【解析】
    由题意得:x+1>0,
    解得:x>-1.
    故选B.
    4、D
    【解析】
    根据分式的基本性质:分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.
    【详解】
    ,A正确;
    ,B正确;
    ,C正确;
    ,D错误,
    故选D.
    本题考查的是分式的基本性质,解题的关键是正确运用分式的基本性质和正确把分子、分母进行因式分解.
    5、D
    【解析】
    根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
    【详解】
    ∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
    ∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
    解得k<1且k≠1.
    ∴k的取值范围为k<1且k≠1.
    故选D.
    本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
    6、D
    【解析】
    根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.
    【详解】
    解:∵BD⊥AD,
    ∴△ABD为直角三角形,
    在Rt△ABD中,BD=4,∠A=30°,
    ∴AB=2BD=8,
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=8,
    故选:D.
    此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.
    7、A
    【解析】
    平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.
    【详解】
    解:点(﹣2,﹣3)关于原点的对称点的坐标是(2,3),
    故选:A.
    本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.
    8、D
    【解析】
    等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.
    【详解】
    ∵分式方程-1=有增根,
    ∴x﹣1=0,x+1=0,
    ∴x1=1,x1=﹣1.
    两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,
    整理得,m=x+1,
    当x=1时,m=1+1=2;
    当x=﹣1时,m=﹣1+1=0,
    当m=0,方程无解,
    ∴m=2.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、9或10.1
    【解析】
    根据等腰△ABC中,当a为底,b,c为腰时,b=c,得出△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,解方程求出k=2,则b+c=2k+1=1;当a为腰时,则b=4或c=4,然后把b或c的值代入计算求出k的值,再解方程进而求解即可.
    【详解】
    等腰△ABC中,当a为底,b,c为腰时,b=c,若b和c是关于x的方程x2-(2k+1)x+1(k-)=0的两个实数根,
    则△=[-(2k+1)]2-4×1(k-)=4k2+4k+1-20k+11=4k2-16k+16=0,
    解得:k=2,
    则b+c=2k+1=1,
    △ABC的周长为4+1=9;
    当a为腰时,则b=4或c=4,
    若b或c是关于x的方程x2-(2k+1)x+1(k-)=0的根,
    则42-4(2k+1)+1(k-)=0,
    解得:k=,
    解方程x2-x+10=0,
    解得x=2.1或x=4,
    则△ABC的周长为:4+4+2.1=10.1.
    10、1.
    【解析】
    利用平移变换的性质即可解决问题;
    【详解】
    观察图象可知,线段AB向左平移1个单位,再向上平移1个单位得到线段A1B1,
    ∴a=1,b=1,
    ∴a-b=1,
    故答案为:1.
    本题考查坐标与图形的变化-平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    11、x(31-2x)=72 或x2-15x+36=1
    【解析】
    设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(31-2x)米,依题意可列方程 x(31-2x)=72,即x2-15x+36=1.
    点睛:本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键.
    12、
    【解析】
    先移项,然后开平方,再开立方即可得出答案.
    【详解】


    故答案为:.
    本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.
    13、1
    【解析】
    先计算出“统计与概率”内容所占的百分比,再乘以10即可.
    【详解】
    解:依题意,得(1-45%-5%-40%)×10=10%×10=1.
    故答案为1.
    本题考查扇形统计图及相关计算.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2)α的值为45°,90°,135°,180°.
    【解析】
    (1)作HG⊥OB于H.由HG∥AO,求出OG,HG,即可得到点H的坐标,作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),此时MB+MH的值最小,最小值等于B'H的长;求得直线B′H的解析式为y= ,即可得到点M的坐标为.
    (2)依据△OST为等腰三角形,分4种情况画出图形,即可得到旋转角的度数.
    【详解】
    解:(1)如图1,作HG⊥OB于H.
    ∵HG∥AO,

    ∵OB=2,OA= ,
    ∴GB= ,HG= ,
    ∴OG=OB-GB= ,
    ∴H(,)
    作点B关于y轴的对称点B′,连接B′H交y轴于点M,则B'(-2,0),
    此时MB+MH的值最小,最小值等于B'H的长.
    ∵B'(-2,0),H(,)
    B'H=
    ∴MB+MH的最小值为
    设直线B'H的解析式为y=kx+b,则有

    解得:
    ∴直线B′H的解析式为
    当x=0时,y=
    ∴点M的坐标为:
    (2)如图,当OT=OS时,α=75°-30°=45°;
    如图,当OT=TS时,α=90°;
    如图,当OT=OS时,α=90°+60°-15°=135°;
    如图,当ST=OS时,α=180°;
    综上所述,α的值为45°,90°,135°,180°.
    本题考查几何变换综合题、平行线分线段成比例定理、轴对称最短问题、勾股定理、等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.
    15、1
    【解析】
    根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.
    【详解】
    ∵▱ABCD的周长=2(BC+CD)=40,
    ∴BC+CD=20①,
    ∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
    ∴S▱ABCD=4BC=6CD,
    整理得,BC=CD②,
    联立①②解得,CD=8,
    ∴▱ABCD的面积=AF•CD=6CD=6×8=1.
    本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.
    16、 (1) ;(2).
    【解析】
    (1)原式第一项利用多项式乘以多项式法则计算,第二项利用多项式除以单项式法则计算即可得到结果;
    (2)原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    (1)原式=2a2−2ab+ab−b2−2a2+ab=−b2;
    (2)原式=-xy(x2-4xy+4y2)=−xy(x−2y)2.
    本题考查的知识点是整式的混合运算, 提公因式法与公式法的综合运用,解题的关键是熟练的掌握整式的混合运算, 提公因式法与公式法的综合运用.
    17、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等 ;;两直线平行,同位角相等.
    【解析】
    根据平行线的性质和判定,还有等量代换可得.
    【详解】
    证明:∵
    ∴___DE∥AC_____( 内错角相等,两直线平行 )
    ∴________________( 两直线平行,内错角相等 )
    又∵
    ∴________________( 两直线平行,同位角相等)
    ∴(等量代换)
    考核知识点:平行线的判定和性质.理解好判定和性质是关键.
    18、(1)见解析;(2)见解析
    【解析】
    (1)因为四边形是平行四边形,,证得≌,即可求出;
    (2)因为四边形ABCD是平行四边形,G是OC的中点,E是OA的中点,所以可以证得OF=OH,又根据(1)中结论,即可得出四边形EFGH是平行四边形,根据平行四边形性质可得.
    【详解】
    证明:(1)∵四边形是平行四边形,
    ∴,,
    ∴,
    ∴≌,

    (2)∵是的中点,是的中点,
    ∴,,

    又∵
    ∴四边形是平行四边形,

    本题考查了平行四边形的判定与性质.解题的关键是选择适宜的证明方法.此题出现了对角线,所以选择对角线互相平分的四边形是平行四边形证明比较简单.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    先套用平方差公式,再根据二次根式的性质计算可得.
    【详解】
    原式=()2﹣()2=5﹣3=2,
    考点:二次根式的混合运算
    20、
    【解析】
    过E作EM⊥AB于M,利用三角形ABE的面积进行列方程求出AB的长度,再利用勾股定理求解BE的长度即可.
    【详解】
    过E作EM⊥AB于M,
    ∵四边形ABCD是正方形,
    ∴AD=BC=CD=AB,
    ∴EM=AD,BM=CE,
    ∵△ABE的面积为4.5,
    ∴×AB×EM=4.5,
    解得:EM=3,
    即AD=DC=BC=AB=3,
    ∵DE=1
    ∴CE=2,
    由勾股定理得:BE= .
    故答案为
    本题考查了正方形的性质、三角形的面积及勾股定理,掌握正方形的性质及勾股定理是解题的关键.
    21、40°
    【解析】
    根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.
    【详解】
    ∵四边形是平行四边形,
    ∴∠A=∠C=70°,
    ∵DC=DB,
    ∴∠C=∠DBC=70°,
    ∴∠CDB=180°-70°-70°=40°.
    故答案是:40°.
    考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.
    22、512
    【解析】设甲地到乙地的实际距离为x厘米,
    根据题意得:1/8000000 =6.4/x ,
    解得:x=51200000,
    ∵51200000厘米=512公里,
    ∴甲地到乙地的实际距离为512公里.
    23、1
    【解析】
    根据菱形的面积等于对角线积的一半,即可求得其面积.
    【详解】
    ∵菱形ABCD的两条对角线长分别为6和4,
    ∴其面积为4×6=1.
    故答案为:1.
    此题考查了菱形的性质.注意熟记①利用平行四边形的面积公式.②菱形面积=ab.(a、b是两条对角线的长度).
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=,y=100x(x≥0);(2)当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少
    【解析】
    (1)根据函数图象中的数据可以求得两种花卉y与x的函数关系式;
    (2)根据(1)中的函数解析式和题意,利用一次函数的性质可以求得怎样分配两种花卉的种植面积才能使种植总费用最少.
    【详解】
    (1)当0≤x≤200时,设白芙蓉对应的函数解析式为y=ax,
    200a=24000,得a=120,
    即当0≤x≤200时,白芙蓉对应的函数解析式为y=120x,
    当x>200时,设白芙蓉对应的函数解析式为y=bx+c,
    ,得,
    即当x>200时,白芙蓉对应的函数解析式为y=80x+8000,
    由上可得,白芙蓉对应的函数解析式为y=
    设醉芙蓉对应的函数解析式为y=dx,
    400d=40000,得d=100,
    即醉芙蓉对应的函数解析式为y=100x(x≥0);
    (2)设白芙蓉种植面积为em2,则醉芙蓉种植面积为(1000-e)m2,种植的总费用为w元,
    ∵白芙蓉的种植面积不少于100m2且不超过醉芙蓉种植面积的3倍,
    ∴100≤e≤3(1000-e),
    解得,100≤e≤750,
    当100≤e≤200时,
    w=120e+100(1000-e)=20e+100000,
    ∴当e=100时,w取得最小值,此时w=102000,
    当200<e≤750时,
    w=80e+8000+100(1000-e)=-20e+108000,
    ∴当e=750时,w取得最小值,此时w=93000,1000-e=250,
    由上可得,当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少,
    答:当种植白芙蓉750m2,醉芙蓉250m2时,才能使种植总费用最少.
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    25、见解析
    【解析】
    根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.
    【详解】
    解:∵AE=a,DE=b,AD=c,
    ∴S正方形EFGH=EH1=(a+b)1,
    S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,
    ∴(a+b)1=1ab+c1,
    ∴a1+b1=c1.
    本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.
    26、(1) ;(2) .
    【解析】
    (1)先提取公因式,再根据完全平方公式分解即可;
    (2)原式通分并利用分式的加法法则计算即可得到结果
    【详解】
    解:(1)
    =
    = ;
    (2)
    =
    =
    =
    = .
    本题考查分解因式和分式的加法运算,能灵活运用知识点进行计算和化简是解题的关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】:

    这是一份福建省泉州市泉港一中学2025届数学九上开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】:

    这是一份福建省泉州市泉港一中学、城东中学2024年数学九上开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    福建省泉州市惠安科山中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】:

    这是一份福建省泉州市惠安科山中学2024-2025学年数学九上开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map