福建省三明建宁县联考2024-2025学年九上数学开学检测模拟试题【含答案】
展开
这是一份福建省三明建宁县联考2024-2025学年九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.
A.1B.1或3C.1或7D.3或7
2、(4分)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为( )
A.﹣2B.1C.2D.0
3、(4分)点M(-2,3)关于x轴对称点的坐标为
A. (-2,-3) B. (2,-3) C. (-3,-2) D. (2,3)
4、(4分)若关于x的方程 是一元二次方程,则m的取值范围是( )
A..B..C.D..
5、(4分)某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为
A.B.
C.D.
6、(4分)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是( )
ABCD
7、(4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律。则第(6)个图形中面积为1的正方形的个数为()
A.20B.25C.35D.27
8、(4分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
A.(﹣1,0)B.(﹣1,﹣1)C.(﹣2,0)D.(﹣2,﹣1)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)_____.
10、(4分)已知一组数据6,6,1,x,1,请你给正整数x一个值_____,使这组数据的众数为6,中位数为1.
11、(4分)分式方程的解为_____.
12、(4分)如图,正方形ABCD的边长为10,点A的坐标为,点B在y轴上.若反比例函数的图像经过点C,则k的值为_____.
13、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,菱形的对角线和交于点,,,求和的长.
15、(8分)先化简,再求值:,其中x=.
16、(8分)如图,在直角坐标系中,A(0,4)、C(3,0),
(1)① 画出线段AC关于y轴对称线段AB;
② 将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.
17、(10分)如图,一张矩形纸片.点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点处,
(1)若,则的度数为 °;
(2)若,求的长.
18、(10分)如图,已知是线段的中点,,且,试说明的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.
20、(4分)如图是一块地的平面示意图,已知AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC=90°,则这块地的面积为_____m2.
21、(4分)如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DF⊥DE交BC的延长线于点F,连结EF,若AE=1,则EF的值为__.
22、(4分)二次根式中,x的取值范围是 .
23、(4分)如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF最小值是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)选择合适的点,在如图所示的坐标系中描点画出函数的图象,并指出当为何值时,的值大于1.
25、(10分)如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.
(1)求证:DE=DC.
(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC的延长线于点G.试探究线段DF、DG的数量关系.
26、(12分)如图1,矩形ABCD的四边上分别有E、F、G、H四点,顺次连接四点得到四边形EFGH.若∠1=∠2=∠3=∠4,则四边形EFGH为矩形ABCD的“反射四边形”.
(1)请在图2,图3中分别画出矩形ABCD的“反射四边形EFGH”.
(2)若AB=4,BC=8,请在图2,图3中任选其一,计算“反射四边形EFGH”的周长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=11-2t=2,
解得t=2.
所以,当t的值为1或2秒时.△ABP和△DCE全等.
故选C.
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
2、D
【解析】
分析:根据根与系数的关系可得出x1x2=1,此题得解.
详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,
∴x1x2=1.
故选D.
点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.
3、A
【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.
解:∵3的相反数是-3,
∴点M(-2,3)关于x轴对称点的坐标为 (-2,-3),
故答案为A
点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数
4、A
【解析】
根据一元二次方程的定义可得m﹣1≠0,再解即可.
【详解】
由题意得:m﹣1≠0,
解得:m≠1,
故选A.
此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
5、C
【解析】
水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.
【详解】
因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.
故选C.
本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
6、C
【解析】
试题分析:由于开始以正常速度匀速行驶,接着停下修车,后来加快速度匀驶,所以开始行驶路S是均匀减小的,接着不变,后来速度加快,所以S变化也加快变小,由此即可作出选择.
解:因为开始以正常速度匀速行驶,所以s随着t的增加而增加,随后由于故障修车,此时s不发生改变,再之后加快速度匀驶,s随着t的增加而增加,综上可得S先缓慢增加,再不变,再加速增加.
故选:C.
考点:函数的图象.
7、D
【解析】
第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1= 个,进一步求得第(6)个图形中面积为1的正方形的个数即可.
【详解】
第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个。
故选:D
此题考查规律型:图形的变化类,解题关键在于找到规律
8、B
【解析】
已知点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,根据向左平移横坐标减,向下平移纵坐标减的平移规律可得,点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以B的坐标为(﹣1,﹣1).
故答案选C.
考点:坐标与图形变化﹣平移.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
原式化为最简二次根式,合并即可得到结果.
【详解】
解:原式=+2=3.
故答案为3
此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
10、2
【解析】
由数据1、1、6、6、x的众数为6、中位数为1知x<1且x≠1,据此可得正整数x的值.
【详解】
∵数据1、1、6、6、x的众数为6、中位数为1,
∴x<1且x≠1,
则x可取2、3、4均可,
故答案为2.
考查了中位数、众数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.
11、x=﹣3
【解析】
根据分式的方程的解法即可求出答案.
【详解】
解:,
∴,
∴(3﹣x)(1+x)=x(1﹣x),
解得:x=﹣3,
故答案为:x=﹣3
本题考查分式方程,解题的关键是熟练运用分式的方程的解法,本题属于基础题型.
12、1
【解析】
过点作轴于,根据正方形的性质可得,,再根据同角的余角相等求出,然后利用“角角边”证明和全等,根据全等三角形对应边相等可得,,再求出,然后写出点的坐标,再把点的坐标代入反比例函数解析式计算即可求出的值.
【详解】
解:如图,过点作轴于,在正方形中,,,
,
,
,
点的坐标为,
,
,
,
在和中,
,
,
,,
,
点的坐标为,
反比例函数的图象过点,
,
故答案为1.
本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点的坐标是解题的关键.
13、
【解析】
先根据得出,再求出的度数,由即可得出结论.
【详解】
,,
,
,
,
.
故答案为:.
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
依据菱形的性质可得Rt△ABO中∠ABO=30°,则可得AO和BO长,根据AC=2AO和BD=2BO可得结果.
【详解】
解:菱形中,,
又,
所以,三角形为等边三角形,
所以,;
,
本题主要考查了菱形的性质,解决菱形中线段的长度问题一般转化为在直角三角形中利用勾股定理求解.
15、,.
【解析】
根据分式的运算法则把所给的分式化为最简,再将x的值代入计算即可求值.
【详解】
=
=
=
当x=时,
原式=.
本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简是解决问题的关键.
16、(1)①作图见解析;②作图见解析;(2).
【解析】
试题分析:(1)、根据题意画出图形;(2)、将面积平分的直线经过平行四边形ABCD的对角线交点(1.5,2).
试题解析:(1)
(2)
考点:(1)、平行四边形的性质;(2)、一次函数的性质.
17、(1);(2)1
【解析】
(1)根据折叠可得∠BFG=∠GFB′,再根据矩形的性质可得∠DFC=40°,从而∠BFG=70°即可得到结论;
(2) 首先求出GD=9-=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题.
【详解】
(1)根据折叠可得∠BFG=∠GFB′,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DGF=∠BFG,∠ADF=∠DFC,
∵
∴∠DFC=40°
∴∠BFD=140°
∴∠BFG=70°
∴∠DGF=70°;
(2)∵AG=,AD=9,
∴GD=9-=,
∵四边形ABCD是矩形,
∴AD∥BC,BC=AD=9,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,由勾股定理得:,
∴BF=BC-CF=9-,
由翻折不变性可知,FB=FB′=,
∴B′D=DF-FB′=-=1.
本题是四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.
18、见解析
【解析】
根据中点定义求出AC=CB,两直线平行,同位角相等,求出∠ACD=∠B,然后证明△ACD和△CBE全等,再利用全等三角形的对应角相等进行解答.
【详解】
解:∵C是AB的中点,
∴AC=CB(线段中点的定义).)
∵CD∥BE(已知),
∴∠ACD=∠B(两直线平行,同位角相等).
在△ACD和△CBE中,
∴△ACD≌△CBE(SAS).
∴∠D=∠E(全等三角形的对应角相等).
本题主要考查了全等三角形的判定与全等三角形的性质,确定用SAS定理进行证明是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据正方形对角线等于边长的倍得出规律即可.
【详解】
由题意得,a1=1,
a2=a1=,
a3=a2=()2,
a4=a3=()3,
…,
an=an-1=()n-1.
=[()n-1]2=
故答案为:
本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.
20、1
【解析】
试题解析:连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC===5,
∵AB=13m,BC=12m,
∴AB2=BC2+CD2,即△ABC为直角三角形,
∴这块地的面积为S△ABC-S△ACD=AC•BC-AD•CD=×5×12-×3×4=1.
21、
【解析】
根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.
【详解】
∵ABCD是正方形
∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°
∵DF⊥DE
∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°
∴∠ADE=∠CDF,且AD=CD,∠A=∠DCF=90°
∴△ADE≌△CDF(SAS)
∴AE=CF=1
∵E是AB中点
∴AB=BC=2
∴BF=3
在Rt△BEF中,EF==
故答案为.
本题考查了正方形的性质,全等三角形的判定,勾股定理,证明△ADE≌△DCF是本题的关键.
22、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
23、4.8
【解析】
【分析】连接AP,由题意知四边形AFPE是矩形,由矩形的性质知EF=AP,所以当AP最小时,EF最小,根据垂线段最短进行解答即可.
【详解】如图,连接AP,
由题意知,四边形AFPE是矩形,则有AP=EF,
当EF取最小值时,则AP也取最小值,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AP有最小值,此时EF有最小值,
由勾股定理知BC==10,
∵S△ABC=AB•AC=BC•AP,
∴AP=4.8,
即EF的最小值是4.8,
故答案为:4.8.
【点睛】本题考查了矩形的判定与性质、勾股定理、垂线段最短等,正确分析是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、图象见详解;时,.
【解析】
任意选取两个的值,代入后求得对应值,在网格上对应标出,连接,可得所需直线,根据已画图象可得时,的取值范围.
【详解】
在函数中,
当时,,
当时,,
描点,画图如下:
由图可知, 时,.
本题考查了一次函数图象的画法,及根据图象求符合条件的的取值范围的问题,熟练掌握相关技巧是解题的关键.
25、(1)证明见试题解析;(2)DF=DG.
【解析】
(1)利用院内接四边形的性质得到∠DEC=∠B,然后利用等角对等边得到结论.
(2)利用旋转的性质及圆内接四边形的性质证得△EDF≌△CDG后即可得到结论.
【详解】
(1)∵四边形ABDE内接于⊙O,
∴∠B+∠AED=180°,
∵∠DEC+∠AED=180°,
∴∠DEC=∠B,
∵AB=AC,
∴∠C=∠B,
∴∠DEC=∠C,
∴DE=DC;
(2)∵四边形ABDE内接于⊙O,
∴∠A+∠BDE=180°,
∵∠EDC+∠BDE=180°,
∴∠A=∠EDC,
∵OA=OE,∴∠A=∠OEA,
∵∠OEA=∠CEF,∴∠A=∠CEF,∴∠EDC=∠CEF,
∵∠EDC+∠DEC+∠DCE=180°,∴∠CEF+∠DEC+∠DCE=180°,即∠DEF+∠DCE=180°,
又∵∠DCG+∠DCE=180°,∴∠DEF=∠DCG,
∵∠EDC旋转得到∠FDG,∴∠EDC=∠FDG,
∴∠EDC﹣∠FDC=∠FDG﹣∠FDC,即∠EDF=∠CDG,
∵DE=DC,∴△EDF≌△CDG(ASA),
∴DF=DG.
26、(1)见解析;(2)8
【解析】
(1)根据反射四边形的定义即可得;
(2)利用勾股定理分别求得各边的长度,由周长公式求解可得.
【详解】
解:(1)如图所示,四边形EFGH即为所求;
(2)在图②中,EF=FG=GH=HE=,
∴反射四边形EFGH的周长为8;
在图③中,EF=GH=,
∴反射四边形EFGH的周长为.
本题主要考查作图-应用与设计作图,熟练掌握勾股定理是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份福建省龙岩市名校2024-2025学年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省建宁县2025届九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份福建省(三元县2024-2025学年九上数学开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。