甘肃省泾川市2024-2025学年九年级数学第一学期开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD= ( )
A.4B.3
C.2D.1
2、(4分)某市为了鼓励节约用水,按以下规定收水费:每户每月用水量不超过,则每立方米水费为元,每户用水量超过,则超过的部分每立方米水费2元,设某户一个月所交水费为元,用水量为,则y与x的函数关系用图象表示为
A.B.
C.D.
3、(4分)正方形面积为,则对角线的长为( )
A.6B.C.9D.
4、(4分)若方程有增根,则a的值为( )
A.1B.2C.3D.0
5、(4分)点P(2,3)到y轴的距离是( )
A.3B.2C.1D.0
6、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
7、(4分)分式的值为0,则的值为( )
A.B.C.D.
8、(4分)若有意义,则x的取值范围是
A.且B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)反比例函数图像上三点的坐标分别为A(-1,y1),B(1,y2),C(3,y3),则y1,y2,,y3的大小关系是_________。(用“>”连接)
10、(4分)如图,是六边形的一个内角.若,则的度数为________.
11、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
12、(4分)如图,直线AB,IL,JK,DC,相互平行,直线AD,IJ、LK、BC互相平行,四边形ABCD面积为18,四边形EFGH面积为11,则四边形IJKL面积为____.
13、(4分)数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则x=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为奖励初三优秀学生和进步显著学生,合阳中学初三年级组在某商店购买A、B两种文具为奖品,已知一件A种文具的单价比B种文具的单价便宜5元,而用300元买A种文具的件数是用200元买B种文具的件数的2倍.
(1)求A种文具的单价;
(2)已知初三年级准备奖励的优秀学生和进步显著学生共有200人,其中优秀学生奖励A种文具,进步显著学生奖励B种文具,年级组购买文具的总费用不超过3400元,求初三年级奖励的优秀学生最少有多少人?
15、(8分) (1)计算:
(2)解方程: .
16、(8分)如图,的直角边OB在x轴的正半轴上,反比例函数的图象经过斜边OA的中点D,与直角边AB相交于点C.
①若点,求点C的坐标:
②若,求k的值.
17、(10分)如图,在中,点,是直线上的两点,,连结,,,.
(1)求证:四边形是平行四边形.
(2)若,,,四边形是矩形,求的长.
18、(10分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.
(1)求证:四边形ACED是平行四边形;
(2)若AC=2,CE=4,求四边形ACEB的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,绕点旋转得到,则点的坐标为_______.
20、(4分)的化简结果为________
21、(4分)一个多边形的内角和等于 1800°,它是______边形.
22、(4分)在平面直角坐标系中,点在第________象限.
23、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知如图:直线AB解析式为,其图像与坐标轴x,y轴分别相交于A、B两点,点P在线段AB上由A向B点以每秒2个单位运动,点C在线段OB上由O向B点以每秒1个单位运动(其中一点先到达终点则都停止运动),过点P与x轴垂直的直线交直线AO于点Q. 设运动的时间为t秒(t≥0).
(1)直接写出:A、B两点的坐标A( ),B( ).
∠BAO=______________度;
(2)用含t的代数式分别表示:CB= ,PQ= ;
(3)是否存在t的值,使四边形PBCQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(4)(3分)是否存在t的值,使四边形PBCQ为菱形?若存在,求出t的值;若不存在,说明理由,
并探究如何改变点C的速度(匀速运动),使四边形PBCQ在某一时刻为菱形,求点C的速度和时
间t.
25、(10分)如图,已知函数的图象为直线,函数的图象为直线,直线、分别交轴于点和点,分别交轴于点和,和相交于点
(1)填空: ;求直线的解析式为 ;
(2)若点是轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;
(3)若函数的图象是直线,且、、不能围成三角形,直接写出的值.
26、(12分)计算
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
作PE⊥OB于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.
【详解】
作PE⊥OB于E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PE=PD,
∵PC∥OA,
∴∠BCP=∠AOB=2∠BOP=30°
∴在Rt△PCE中,PE=PC=×4=2,
故选C.
本题考查角平分线的性质、含30度角的直角三角形和三角形的外角性质,解题的关键是掌握角平分线的性质、含30度角的直角三角形和三角形的外角性质.
2、C
【解析】
水费y和用水量x是两个分段的一次函数关系式,并且y随x的增大而增大,图象不会与x轴平行,可排除A、B、D.
【详解】
因为水费y是随用水量x的增加而增加,而且超过后,增加幅度更大.
故选C.
本题考查一次函数图象问题注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
3、B
【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.
【详解】
设对角线长是x.则有
x2=36,
解得:x=6.
故选B.
本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.
4、A
【解析】
先去分母,根据方程有增根,可求得x=2,再求出a.
【详解】
可化为
x-1-a=3(x-2),
因为方程有增根,
所以,x=2,
所以,2-1-a=0,
解得a=1.
故选A
本题考核知识点:分式方程的增根. 解题关键点:理解增根的意义.
5、B
【解析】
根据点的到y轴的距离等于横坐标的绝对值解答.
【详解】
解:点P(1,3)到y轴的距离为1.
故选:B.
本题考查了点的坐标,熟记点的到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.
6、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,又是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、A
【解析】
分析:直接利用分式的值为0的条件以及分式有意义的条件进而得出答案.
详解:∵分式的值为0,∴x2﹣9=0,x+1≠0,解得:x=1.
故选A.
点睛:本题主要考查了分式的值为零的条件,正确记忆分式的值为零的条件是解题的关键.
8、A
【解析】
根据二次根式有意义的条件和分式有意义的条件即可求出答案.
【详解】
由题意可知:,
解得:且,
故选A.
本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
此题可以把点A、B、C的横坐标代入函数解析式求出各纵坐标后再比较大小.
【详解】
解:当x=-1时,y1= ;
当x=1时,y2=;
当x=3时,y3=;
故y1>y3>y2.
本题考查反比例函数图象上点的坐标特征,对于此类问题最简单的办法就是将x的值分别代入函数解析式中,求出对应的y再比较大小.也可以画出草图,标出各个点的大致位置坐标,再比较大小.
10、
【解析】
根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E =120°代入,即可求出答案.
【详解】
解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°
∵∠E=120°
∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°
故答案为600°
本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.
11、50
【解析】
根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=S△AHC+S△BFC+S△AEB=
=50
故答案为:50.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
12、1
【解析】
由平行四边形的性质可得,,,,由面积和差关系可求四边形面积.
【详解】
解:,,
四边形是平行四边形,
,
同理可得:,,,
四边形面积四边形面积(四边形面积四边形面积),
故答案为:1.
本题考查了平行四边形的判定与性质,由平行四边形的性质得出是解题的关键.
13、1
【解析】
∵x>5∴x相当于已知调和数1,代入得,解得,x=1.
三、解答题(本大题共5个小题,共48分)
14、 (1)一件种文具的价格为15元;(2) 初三年级奖励的优秀学生最少有120人.
【解析】
(1)设A种文具的单价为x元,则B种文具的单价为每件(x+5)元,利用用300元买A种文具的件数是用200元买B种文具的件数的2倍得出等式,求出即可;
(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人,根据“年级组购买文具的总费用不超过3400元”列出不等式即可求得结果.
【详解】
(1)A种文具的单价为x元,则B种文具的单价为每件(x+5)元,
根据题意得出:,
解得:x=15,
经检验得出:x=15是原方程的根,
答:A种文具的单价为15元;
(2)设初三年级奖励的优秀学生有a人,则进步显著学生有(200-a)人.
依题意,得15a+20(200-a)≤3400,
解得:a≥120,
答:初三年级奖励的优秀学生最少有120人.
本题考查了分式方程的应用及一元一次不等式的应用,分析题意,找到合适的等量关系与不等量关系是解决问题的关键.
15、(1)9;(2)
【解析】
(1)直接利用二次根式的性质分别化简得出答案;
(2)将方程化为一般性质,然后利用因式分解法解方程.
【详解】
(1)原式=9;
(2)原方程可化为
解得:
此题主要考查了二次根式的混合运算和解一元二次方程,解题的关键是掌握一元二次方程的解法和二次根式的性质,本题是属于基础题型.
16、①(4,);②k=12
【解析】
①根据点D是OA的中点即可求出D点坐标,再将D的坐标代入解析式求出解析式,从而得到C的坐标;
②连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD的面积,再根据条件列出方程求k的值即可。
【详解】
解:①∵D是OA的中点,点A的坐标为(4,6),
∴D(,),即(2,3)
∴k=2×3=6
∴解析式为
∵A的坐标为(4,6),AB⊥x轴
∴把x=4代入得y=
∴C的坐标为(4,)
②连接OC,
设A(a,b),则D(,)
可得k=,ab=4k
∴解析式为
∴B(a,0),C(a,)
∴
∴
解得:k=12
本题考查了一次函数的性质,要正确理解参数k的几何意义,能用代数式表达三角形OCD的面积是解题的关键。
17、 (1)见解析;(2)
【解析】
(1)连结交于点,由四边形ABCD是平行四边形,可得OA=OC,OD=OB,又因为,从而OE=OF,可证四边形是平行四边形;
(2)由勾股定理可求出BD的长,进而求出OD的长,再由勾股定理求出AO的长,根据矩形的性质可知AO=EO,从而可求出DE的长.
【详解】
(1)连结交于点,
∵四边形ABCD是平行四边形,
∴OA=OC,OD=OB,
∵,
∴OE=OF,
四边形是平行四边形;
(2),,,
,
,
.
四边形是矩形,
,,,
,
.
本题考查了平行四边形的判定与性质,矩形的性质,勾股定理等知识,熟练掌握平行四边形的判定与性质是解答(1)的关键,熟练掌握矩形的性质是解(2)的关键.
18、(1)详见解析;(1)10+1.
【解析】
(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;
(1)四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.
【详解】
(1)∵∠ACB=90°,DE⊥BC,
∴AC∥DE
又∵CE∥AD
∴四边形ACED是平行四边形;
(1)∵四边形ACED是平行四边形.
∴DE=AC=1.
在Rt△CDE中,由勾股定理得CD=,
∵D是BC的中点,
∴BC=1CD=4,
在△ABC中,∠ACB=90°,由勾股定理得AB=,
∵D是BC的中点,DE⊥BC,
∴EB=EC=4,
∴四边形ACEB的周长=AC+CE+EB+BA=10+1.
本题考查了平行四边形的判定与性质,垂直平分线的性质定理,勾股定理,注意寻找求AB和EB的长的方法和途径是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交于点D,点D即为所求.
【详解】
解:连接AA′,BB′,作线段AA′,BB′的垂直平分线,两条垂直平分线交点即为点D,如图,旋转中心D的坐标为(3,0).
故答案为:(3,0).
本题考查了旋转的性质,掌握对应点连线的垂直平分线的交点就是旋转中心是解题的关键.
20、
【解析】
根据二次根式的乘法,化简二次根式即可.
【详解】
解:,
故答案为:.
本题考查了二次根式的性质与化简,熟练掌握二次根式的乘法法则是解题关键.
21、十二
【解析】
根据多边形的内角和公式列方程求解即可;
【详解】
设这个多边形是n边形,
由题意得,(n-2)•180°=1800°,
解得n=12;
故答案为十二
本题考查了多边形的内角和,关键是掌握多边形的内角和公式.
22、二
【解析】
根据各象限内点的坐标特征解答.
【详解】
解:点位于第二象限.
故答案为:二.
本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
23、1
【解析】
根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出答案.
【详解】
解:∵AE的垂直平分线为DG
∴AF=EF,∠AFG=∠EFD=90°,DA=DE
∵四边形ABCD是平行四边形
∴DC∥AB,AD∥BC,DC=AB,
∴∠DEA=∠BAE
∵AE平分∠BAD交CD于点E
∴∠DAE=∠BAE
∴在△DEF和△GAF中
∴△DEF≌△GAF(ASA)
∴DE=AG
又∵DE∥AG
∴四边形DAGE为平行四边形
又∵DA=DE
∴四边形DAGE为菱形.
∴AG=AD
∵AD=4cm
∴AG=4cm
∵BG=1cm
∴AB=AG+BG=4+1=1(cm)
故答案为:1.
本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1),∠BAO=30°;(2);(3)见解析;(4) 当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
【解析】
【分析】(1)设x=0,y=0可分别求出A,B的坐标;(2)纵坐标的差等于线段长度;(3)当PQ=BC时 , 即,是平行四边形;(4)时,,,所以不可能是菱形;若四边形PBCQ构成菱形则,PQ=BC,
且PQ=PB时成立.
【详解】解:(1)直接写出:A、B两点的坐标,∠BAO=30°
(2)用含t的代数式分别表示:;
(3)∵
∴当PQ=BC时 , 即,时,四边形PBCQ是平行四边形.
(4)∵时,,,
∴四边形PBCQ不能构成菱形。
若四边形PBCQ构成菱形则,PQ=BC,
且PQ=PB时成立.
则有时
BC=BP=PQ= OC=OB-BC=
∴当点C的速度变为每秒个单位时,时四边形PBCQ是菱形.
【点睛】本题考核知识点:一次函数,平行四边形,菱形的判定.此题是综合题,要用数形结合思想进行分析.
25、(1),直线的解析式为;(2)点的坐标为或;(3)的值为或或.
【解析】
(1)将点坐标代入中,即可得出结论;将点,坐标代入中,即可得出结论;
(2)先利用两三角形面积关系判断出,再分两种情况,即可得出结论;
(3)分三种情况,利用两直线平行,相等或经过点讨论即可得出结论.
【详解】
解:(1)点在函数的图象上,
,
,
直线过点、,
可得方程组为,
解得,
直线的解析式为;
故答案为:;
(2)是与轴的交点,当时,,
,坐标为,
又的面积是面积的2倍,
第一种情况,当在线段上时,
,
,即,
∴,
坐标,
第二种情况,当在射线上时,
,
,
,
坐标,
点的坐标为或;
(3)、、不能围成三角形,
直线经过点或或,
①直线的解析式为,
把代入到解析式中得:
,
,
②当时,
∵直线的解析式为,
,
③当时,
∵直线的解析式为,
,
即的值为或或.
此题是一次函数综合题,主要考查了坐标轴上点的特点,待定系数法,三角形的面积的求法,用分类讨论的思想解决问题是解本题的关键.
26、
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】: 这是一份2025届甘肃省定西岷县联考九年级数学第一学期开学联考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省平凉市泾川县数学九上开学预测试题【含答案】: 这是一份2024-2025学年甘肃省平凉市泾川县数学九上开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2024-2025学年甘肃省靖远县数学九年级第一学期开学经典模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。