甘肃省平凉市崇信县2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修米,所列方程正确的是( )
A.B.
C.D.
2、(4分)在平面直角坐标系中,点位于
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)在中,,的中垂线交,于点,,的周长是8,,则的周长是( )
A.10B.11C.12D.13
4、(4分)下列图形均是一些科技创新公司标志图,其中是中心对称图形的是( )
A.B.C.D.
5、(4分)如果ab>0,a+b<0,那么下面各式:① ; ②=1;③=-b.其中正确的是( )
A.①②B.①③C.①②③D.②③
6、(4分)一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是( )
A.10B.11C.12D.15
7、(4分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是( )
A.∠A=∠DB.BC=EFC.∠ACB=∠FD.AC=DF
8、(4分)一个正比例函数的图象经过(1,﹣3),则它的表达式为( )
A.y=﹣3xB.y=3xC.y=D.y=﹣
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形中,连接,且,过点作于点,过点作于点,在的延长线上取一点,,若,则的度数为____________.
10、(4分)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是________________.
12、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.
13、(4分)如图,D是△ABC的边AC上的一点,连接BD,已知∠ABD=∠C,AB=6,AD=4,求线段CD的长.
三、解答题(本大题共5个小题,共48分)
14、(12分)若a>0,M=,N=.
(1)当a=3时,计算M与N的值;
(2)猜想M与N的大小关系,并证明你的猜想.
15、(8分)如图,在平行四边形中,,于点,试求的度数.
16、(8分)为了推动我区教育教学发展,加快教师的成长与提升,学年度某名师工作室开展了多次送教下乡活动.在某次研讨课活动中,为了分析某节复习课的教学效果,课前,张老师让八()班每位同学做道类似题目(与这节课内容相关)析某节复至少容对,解题情况如图所示:课后,再让学生做道类似的题目.结果如表所示.已知每位学生至少答对题.
(1)根据图表信息填空: ; .
(2)该班课前解题时答对题数的众数是 ;课后答对题数的中位数是 .
(3)通过计算课前,课后学生答对题数的平均数,评价这节复习课的教学效果.
17、(10分)某校组织275名师生郊游,计划租用甲、乙两种客车共7辆,已知甲客车载客量是30人,乙客车载客量是45人,其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需3000元.
(1)租用一辆甲种客车、一辆乙种客车的租金各多少元?
(2)设租用甲种客车辆,总租车费为元,求与的函数关系式;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
18、(10分)如图,直线l1:y1=−x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(-2,0),与y轴交于点C.两条直线相交于点D,连接AB.
(1)求两直线交点D的坐标;
(2)求△ABD的面积;
(3)根据图象直接写出y1>y2时自变量x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 .
20、(4分)函数中自变量的取值范围是_________________.
21、(4分)等腰三角形的一个内角是30°,则另两个角的度数分别为___.
22、(4分)计算:_______.
23、(4分)在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环,1.3环,则射击成绩较稳定的运动员是______(填“甲”或“乙”).
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:(1);(2);(3)
25、(10分)如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,求四边形AEDF的周长P.
26、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.的三个顶点都在格点上,将绕点按顺时针方向旋转得到.
(1)在正方形网格中,画出;
(2)画出向左平移4格后的;
(3)计算线段在变换到的过程中扫过区域的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
等量关系为:原计划用的时间-实际用的时间=4,据此列方程即可.
【详解】
解:原计划修天,实际修了天,
可列得方程,
故选:B.
本题考查了分式方程的应用,从关键字找到等量关系是解决问题的关键.
2、C
【解析】
根据第三象限内的点的横坐标小于零,纵坐标小于零,可得答案.
【详解】
解:在平面直角坐标系中,点位于第三象限,
故选:.
本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、D
【解析】
根据中垂线定理得出AE=BE,根据三角形周长求出AB,即可得出答案.
【详解】
∵DE是AB的中垂线
∴AE=BE
∵△BCE的周长为8
∴AB+BC=8
∵AB =5
∴BC=3
∵AB=AC
∴AC=5
∴△ABC的周长是:AC+AB+BC=5+5+3=13.
故选A.
本题考查了中垂线定理、等腰三角形的性质,正确解答本题的关键是根据中垂线定理得出AE=BE。
4、A
【解析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.
【详解】
A、是中心对称图形,故此选项正确;
B、不是中心对称图形,故此选项错误;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误;
故选A.
此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
5、D
【解析】
先根据ab>0,a+b<0,判断出a、b的符号,再逐个式子分析即可.
【详解】
∵ab>0,a+b<0,
∴a<0,b<0,
∴无意义,故①不正确;
,故②正确
,故③正确.
故选D.
本题考查了二次根式的性质,熟练掌握性质是解答本题的关键. ,, (a≥0,b>0).
6、A
【解析】
首先根据频数=总数×频率,求得第五组频数;
再根据各组的频数和等于总数,求得第六组的频数:根据题意,得
第五组频数是50×0.2=1,
故第六组的频数是50-5-7-8-1-1=1.
故选A.
7、D
【解析】
解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;
∴添加BC=EF,利用SAS可得△ABC≌△DEF;
∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;
故选D.
点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.
8、A
【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.
【详解】
设正比例函数解析式为y=kx(k≠0).则根据题意,得
﹣3=k,解得k=﹣3
∴正比例函数的解析式为:y=﹣3x
故选A.
本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、25
【解析】
根据平行四边形的性质得到BD=BA,根据全等三角形的性质得到AM=DN,推出△AMP是等腰直角三角形,得到∠MAP=∠APM=45°,根据三角形的外角的性质可得出答案.
【详解】
解:在平行四边形ABCD中,
∵AB=CD,
∵BD=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴∠AMB=∠DNB=90°,
在△ABM与△DBN中
,
∴△ABM≌△DBN(AAS),
∴AM=DN,
∵PM=DN,
∴AM=PM,
∴△AMP是等腰直角三角形,
∴∠MAP=∠APM=45°,
∵AB∥CD,
∴∠ABD=∠CDB=70°,
∴∠PAB=∠ABD-∠P=25°,
故答案为:25.
本题考查了平行四边形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,熟练掌握性质和判定是解题的关键.
10、1.
【解析】
解:由图可知,把数据从小到大排列的顺序是:180、182、1、185、186,中位数是1.
故答案为1.
本题考查折线统计图;中位数.
11、1.1
【解析】
连接DF,由勾股定理求出AB=1,由等腰三角形的性质得出∠CAF =∠DAF,由SAS证明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,设CF=DF=x,则BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.
【详解】
连接DF,如图所示:
在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=1,
∵AD=AC=3,AF⊥CD,
∴∠CAF =∠DAF,BD=AB-AD=2,
在△ADF和△ACF中,
∴△ADF≌△ACF(SAS),
∴∠ADF=∠ACF=90°,CF=DF,
∴∠BDF=90°,
设CF=DF=x,则BF=4-x,
在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,
即x2+22=(4-x)2,
解得:x=1.1;
∴CF=1.1;
故答案为1.1.
本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质,证明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解决问题的关键.
12、y=2x-1
【解析】
根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点(5,1)代入即可得出直线的函数解析式.
【详解】
解:设平移后直线的解析式为y=2x+b.
把(5,1)代入直线解析式得1=2×5+b,
解得 b=-1.
所以平移后直线的解析式为y=2x-1.
故答案为:y=2x-1.
本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
13、1.
【解析】
由已知角相等,加上公共角,得到三角形ABD与三角形ACB相似,由相似得比例,将AB与AD长代入即可求出CD的长.
【详解】
在△ABD和△ACB中,∠ABD=∠C,∠A=∠A,
∴△ABD∽△ACB,
∴,
∵AB=6,AD=4,
∴,
则CD=AC﹣AD=9﹣4=1.
考点:相似三角形的判定与性质.
三、解答题(本大题共5个小题,共48分)
14、(1)M=,N=;(2)M<N;证明见解析.
【解析】
(1)直接将a=3代入原式求出M,N的值即可;
(2)直接利用分式的加减以及乘除运算法则,进而合并求出即可.
【详解】
(1)当a=3时,M,N;
(2)方法一:猜想:M<N.理由如下:
M﹣N.
∵a>0,∴a+2>0,a+3>0,∴,∴M﹣N<0,∴M<N;
方法二:猜想:M<N.理由如下:
.
∵a>0,∴M>0,N>0,a2+4a+3>0,∴,∴,∴M<N.
本题考查了分式的加减以及乘除运算,正确通分得出是解题的关键.
15、.
【解析】
由BD=CD可得∠DBC=∠C=70°,由平行四边形的性质可得AD∥BC,从而有∠ADB=∠DBC=70°,继而在直角△AED中,根据直角三角形两锐角互余即可求得答案.
【详解】
,
,
在中,,
,
于点,
,
.
本题考查了平行四边形的性质,等边对等角,直角三角形两锐角互余等知,熟练掌握相关知识是解题的关键.
16、(1);;(2)题,题;(3)这节复习课的教学效果明显.,
【解析】
求得频数之和即可得出b的值,再利用总数b求出a的值
根据众数和中位数的定义求得答案
求出答对题数的平均数即可.
【详解】
解:(1)b=4+7+10+9+7+3=40(人),a=40-2-3-3-9-13=10(人)
(2)根据众数和中位数的定义,求得众数为题,中位线为题
(3)课前答对题数的平均数为(题),
课后答对题数的平均数为(题),
从答对题数的平均数知,这节复习课的教学效果明显.,
本题考查频率分布表,熟练掌握计算法则是解题关键.
17、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)w=-100x+2800;当租用甲种客车2辆时,总租车费最少,最少费用为1元.
【解析】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,列出方程即可解决问题;
(2)由题意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范围,利用一次函数的性质即可解决问题.
【详解】
(1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,
由题意5x+2(x+100)=2300,
解得x=300,
答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
(2)由题意w=300x+400(7-x)=-100x+2800,
又30x+45(7-x)≥275,
解得x≤,
∴x的最大值为2,
∵-100<0,
∴x=2时,w的值最小,最小值为1.
答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
本题考查一元一次方程的应用、一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会构建一次函数解决最值问题.
18、(1)D点坐标为(4,3)(1)15;(3)x<4
【解析】
试题分析:(1)先得到两函数的解析式,组成方程组解求出D的坐标;(1)由y1=
x+1可知,C点坐标为(0,1),分别求出△ABC和△ACD的面积,相加即可.(3)由图可直接得出y1>y1时自变量x的取值范围.
试题解析:(1)将A(0,6)代入y1=−x+m得,m=6;将B(-1,0)代入y1=kx+1得,k=
组成方程组得解得 故D点坐标为(4,3);
(1)由y1=x+1可知,C点坐标为(0,1),S△ABD=S△ABC+S△ACD=×5×1+×5×4=15;
(3)由图可知,在D点左侧时,y1>y1,即x<4时,出y1>y1.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、52
【解析】
解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,
∴AO=5,BO=12cm,
∴AB==13cm,
∴BC=CD=AD=AB=13cm,
∴菱形的周长为4×13=52cm
20、且
【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.
【详解】
根据分式和二次根式有意义的条件可得
解得且
故答案为:且.
本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
21、75°、75°或30°、120°.
【解析】
分为两种情况讨论,①30°是顶角;②30°是底角;结合三角形内角和定理计算即可
【详解】
①30°是顶角,则底角= (180°﹣30°)=75°;
②30°是底角,则顶角=180°﹣30°×2=120°.
∴另两个角的度数分别是75°、75°或30°、120°.
故答案是75°、75°或30°、120°.
此题考查等腰三角形的性质,难度不大
22、2
【解析】
先把二次根式化为最简二次根式,然后将括号内的式子进行合并,最后进一步加以计算即可.
【详解】
原式
,
故答案为:2.
本题主要考查了二次根式的混合运算,熟练掌握相关运算法则是解题关键.
23、乙
【解析】
直接根据方差的意义求解.
【详解】
∵S甲2=1.8,S乙2=1.3,1.3<1.8,
∴射击成绩比较稳定的是乙,
故答案为:乙.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
二、解答题(本大题共3个小题,共30分)
24、(1)1;(2);(3)5.
【解析】
(1)先根据乘方的意义、负整数指数幂的意义、零指数幂的意义、绝对值的意义、二次根式的性质逐项化简,再进一步计算即可;
(2)化为最简二次根式,然后去括号合并同类二次根式即可;
(3)先根据完全平方公式和二次根式的乘法法则计算,再合并化简即可.
【详解】
解:原式;
原式;
原式.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
25、1
【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
【详解】
解:在Rt△ABC中,
∵AC=6,AB=8,
∴BC==10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3,
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=1.
本题考查了三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
26、(1)见解析;(2)见解析;(3).
【解析】
(1)直接利用旋转的性质得出对应点位置进而得出答案;
(2)利用平移的性质得出对应点位置进而得出答案;
(3)利用扇形面积求法得出答案.
【详解】
(1)如图所示:△AB'C'即为所求;
(2)如图所示:△A'B″C″即为所求;
(3)由勾股定理得AB=5,线段AB在变换到AB'的过程中扫过区域的面积为:π.
本题考查了旋转变换以及平移变换,正确得出对应点位置是解题的关键.
题号
一
二
三
四
五
总分
得分
2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省平凉市名校数学九年级第一学期开学考试试题【含答案】: 这是一份2024-2025学年甘肃省平凉市名校数学九年级第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。