甘肃省庆阳宁县联考2024年数学九上开学复习检测模拟试题【含答案】
展开
这是一份甘肃省庆阳宁县联考2024年数学九上开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
2、(4分)如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
A.12B.11C.10D.9
3、(4分)已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是( )
A.B.C.D.
4、(4分)下面几组条件中,能判断一个四边形是平行四边形的是( )
A.一组对边相等B.两条对角线互相平分
C.一组对边平行D.两条对角线互相垂直
5、(4分)函数 y=中,自变量x的取值范围是( )
A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣2
6、(4分)如图,E为边长为 2 的正方形 ABCD的对角线上一点,BE=BC,P为 CE上任意一点,PQ⊥BC于点 Q,PR⊥BE于 R,则 PQ+PR的值为( )
A.B.C.D.
7、(4分)如图,在中,是的中点,,,则的长为( )
A.B.4C.D.
8、(4分)下列各式从左到右的变形中,是因式分解的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.
10、(4分)数据6,5,7,7,9的众数是 .
11、(4分)在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为__________.
12、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
13、(4分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,原点为O,已知一次函数的图象过点A(0,5),点B(﹣1,4)和点P(m,n)
(1)求这个一次函数的解析式;
(2)当n=2时,求直线AB,直线OP与x轴围成的图形的面积;
(3)当△OAP的面积等于△OAB的面积的2倍时,求n的值
15、(8分)如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
16、(8分)如图,一次函数的图象与反比例函数的图象交于点和点.
(1)求一次函数和反比例函数的解析式;
(2)直接写出不等式的解集.
17、(10分)如图,中,是的中点,将沿折叠后得到,且 点在□内部.将延长交于点.
(1)猜想并填空:________(填“”、“”、“”);
(2)请证明你的猜想;
(3)如图,当,设,,,证明:.
18、(10分)已知:在平面直角坐标系中,边长为8的正方形OABC的两边在坐标轴上(如图).
(1)求点A,B,C的坐标.
(2)经过A,C两点的直线l上有一点P,点D(0,6)在y轴正半轴上,连PD,PB(如图1),若PB2﹣PD2=24,求四边形PBCD的面积.
(3)若点E(0,1),点N(2,0)(如图2),经过(2)问中的点P有一条平行于y轴的直线m,在直线m上是否存在一点M,使得△MNE为直角三角形?若存在,求M点的坐标;若不存在,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC=__________.
20、(4分)函数中,自变量________的取值范围是________.
21、(4分)已知直线经过点(-2,2),并且与直线平行,那么________.
22、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________
23、(4分)若一个三角形的三边的比为3:4:5,则这个三角形的三边上的高之比为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.
已知C(-2,2),D(1,2),E(1,0),F(-2,0).
(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是 ;
(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;
(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.
25、(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
26、(12分)(1)计算:
(2)如图,E、F是矩形ABCD边BC上的两点,且AF=DE.求证:BE=CF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
直接利用轴对称图形和中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.
此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.
2、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,计算即可.
【详解】
∵点D,E分别AB、BC的中点,
∴DE=AC=3.5,
同理,DF=BC=3,EF=AB=2.5,
∴△DEF的周长=DE+EF+DF=9,
故选D.
本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
3、D
【解析】
利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.
【详解】
解:设正比例函数解析式为y=kx(k≠0).
∵正比例函数图象经过点(4,-6),
∴-6=4k,
∴.
∵当x=-4时,y=x=6,
∴点(-4,6)在此正比例函数图象上.
故选D.
本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
4、B
【解析】
试题分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法,采用排除法,逐项分析判断.
解:A、一组对边相等,不能判断,故错误;
B、两条对角线互相平分,能判断,故正确;
C、一组对边平行,不能判断,故错误;
D、两条对角线互相垂直,不能判断,故错误.
故选B.
考点:平行四边形的判定.
5、B
【解析】
依题意,得x+2≥0,
解得:x≥-2.
故选B.
6、B
【解析】
连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.
【详解】
解:如图,连接BP,设点C到BE的距离为h,
则S△BCE=S△BCP+S△BEP,
即BE•h=BC•PQ+BE•PR,
∵BE=BC,
∴h=PQ+PR,
∵正方形ABCD的边长为2,
∴h=2×.
故选B.
本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.
7、D
【解析】
根据相似三角形的判定和性质定理和线段中点的定义即可得到结论.
【详解】
解:∵∠ADC=∠BAC,∠C=∠C,
∴△BAC∽△ADC,
∴ ,
∵D是BC的中点,BC=6,
∴CD=3,
∴AC2=6×3=18,
∴AC=,
故选:D.
本题考查相似三角形的判定和性质,线段中点的定义,熟练掌握相似三角形的判定和性质是解题的关键.
8、D
【解析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.
【详解】
解:A、不是因式分解,故A错误;
B、是整式乘法,故B错误;
C、,故C错误;
D、,故D正确;
故选:D.
本题考查了因式分解的意义,关键是熟练掌握定义,区别开整式的乘除运算.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
解:应分(70-42)÷4=7,
∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,
∴应分1组.
故答案为:1.
10、1.
【解析】
试题分析:数字1出现了2次,为出现次数最多的数,故众数为1,故答案为1.
考点:众数.
11、2cm或22cm
【解析】
如图,设∠A的平分线交BC于E点,
∵AD∥BC,
∴∠BEA=∠DAE,
又∵∠BAE=∠DAE,
∴∠BEA=∠BAE
∴AB=BE.
∴BC=3+4=1.
①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;
②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.
所以□ABCD的周长为22cm或2cm.
故答案为:22cm或2cm.
点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
12、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
13、1
【解析】
根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.
【详解】
解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,
∴∠DBO=∠OBC,∠ECO=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,
∴DB=DO,OE=EC,
∵DE=DO+OE,
∴DE=BD+CE=1.
故答案为1.
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.
三、解答题(本大题共5个小题,共48分)
14、(1)y=x+5;(2)5;(1)7或1
【解析】
(1)利用待定系数法求一次函数的解析式;
(2)设直线AB交x轴于C,如图,则C(﹣5,0),然后根据三角形面积公式计算S△OPC即可;
(1)利用三角形面积公式得到×5×|m|=2××1×5,解得m=2或m=﹣2,然后利用一次函数解析式计算出对应的纵坐标即可.
【详解】
解:(1)设这个一次函数的解析式是y=kx+b,
把点A(0,5),点B(﹣1,4)的坐标代入得:,解得:k=1,b=5,
所以这个一次函数的解析式是:y=x+5;
(2)设直线AB交x轴于C,如图,
当y=0时,x+5=0,解得x=﹣5,则C(﹣5,0),
当n=2时,S△OPC=×5×2=5,
即直线AB,直线OP与x轴围成的图形的面积为5;
(1)∵当△OAP的面积等于△OAB的面积的2倍,
∴×5×|m|=2××1×5,
∴m=2或m=﹣2,
即P点的横坐标为2或﹣2,
当x=2时,y=x+5=7,此时P(2,7);
当x=﹣2时,y=x+5=1,此时P(﹣2,1);
综上所述,n的值为7或1.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
15、(1)证明见解析;(2)2.
【解析】
分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.
(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.
详解:(1)证明:∵∥,
∴
∵平分
∴,
∴
∴
又∵
∴
又∵∥,
∴四边形是平行四边形
又∵
∴是菱形
(2)解:∵四边形是菱形,对角线、交于点.
∴.,,
∴.
在中,.
∴.
∵,
∴.
在中,.为中点.
∴.
点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.
16、(1),;(2)或.
【解析】
(1)将点A的坐标代入反比例函数的解析式可求得m的值,从而得到反比例函数的解析式,然后将点B的坐标代入可求得n的值,接下来,利用待定系数法求得直线AB的解析式即可;
(2)不等式的解集为直线y=kx+b位于反比例函数上方部分时,自变量x的取值范围;
【详解】
解:(1)∵点在反比例函数上,
∴,
∴反比例函数解析式为:.
∵点在上,
∴.
∴.
将点,代入,得.
解得 .
直线的解析式为:.
(2)直线y=kx+b位于反比例函数上方部分时,
x的取值范围是或.
∴不等式的解集为或.
本题主要考查的是反比例函数的综合应用,数形结合是解答问题(2)的关键
17、(1)=;(2)见解析;(3)见解析
【解析】
(1)根据折叠的性质、平行四边形的性质、以及等腰三角形的判定与性质可猜想为相等;
(2)先证明∠EDF=∠EGF,再证明EG=ED,则等边对等角得:∠EGD=∠EDG,相减可得结论;
(3)分别表示BF、CF、BC的长,证明ABCD是矩形得:∠C=90°,在Rt△BCF中,由勾股定理列式可得结论.
【详解】
解:(1)GF=DF,
故答案为:=;
(2)理由是:
连接DG,
由折叠得:AE=EG,∠A=∠BGE,
∵E在AD的中点,
∴AE=ED,
∴ED=EG,
∴∠EGD=∠EDG,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A+∠ADC=180°,
∵∠BGE+∠EGF=180°,
∴∠EDF=∠EGF,
∴∠EDF-∠EDG=∠EGF-∠EGD,
即∠GDF=∠DGF,
∴GF=DF;
(3)证明:如图2,由(2)得:DF=GF=b,
由图可得:BF=BG+GF=a+b,
由折叠可得:AB=BG=a,AE=EG=c,
在ABCD中,
BC=AD=2AE=2c,CD=AB=a,
∴CF=CD-DF=a-b,
∵∠A=90°,
∴ABCD是矩形,
∴∠C=90°,
在Rt△BCF中,由勾股定理得,
BC2+CF2=BF2,
∴(2c)2+(a-b)2=(a+b)2,
整理得:c2=ab.
本题考查了平行四边形的性质、矩形的性质和判定、勾股定理、折叠的性质、等腰三角形的性质与判定,难度适中,熟练掌握折叠前后的边和角相等是关键.
18、(1)A(8,0),B(8,8),C(0,8);(2)15;(3)M的坐标是(3,7)或(3,2)
【解析】
(1)根据正方形的性质直接写出点A,B,C的坐标.
(2)求得直线AC的解析式为y=-x+8,过点P作平行于x轴的直线,根据题意可求点P的坐
标是:P(3,5),故四边形PBCD的面积=S +S
(3)根据第(2)中求得的P(3,5),设M(3,t),分类讨论:
①当∠MEN=90°时,ME=3+(t-1)2,EN=1+2,MN=1+t,利用勾股定理求得t的值,
②当∠MNE=90°时,同理可求:M(3,2).
③显然∠EMN不可能等于90°.
综合可得:使△MNE为直角三角形的点是M(3,7)或M(3,2),
【详解】
(1)∵如图1,四边形OABC是正方形,且其边长为8,
∵.OA=AB=BC=OC=8,
∴A(8,0),B(8,8),C(0,8),
(2)设直线AC的解析式为y=k+8,
将A(8,0)代入,得0=8k+8,
解得k=-1
故直线AC的解析式为y=-x+8.
设P(x,-x+8)
∵PB-PD=24,D(0,6),B(8,8),
∴(x-8) +(-x+8-8) -x-(-x+8-6) =24,
解得x=3,
∴点P的坐标是:P(3,5),
∴四边形PBCD的面积=S +S =×2×3+×8×3=15
(3)根据第(2)中求得的P(3,5),设M(3,t),分类讨论:
①当∠MEN=90°时, ME =3+(t-1) ,EN=1+2,MN=1+t
∴MN=ME+EN
∴1+t=9+t-2t+1+5,
∴t=7,
∴M(3,7)
②当∠MNE=90°时,同理可求:M(3,2)
③显然∠EMN不可能等于90°
综合可得:使△MNE为直角三角形的点M的坐标是(3,7)或(3,2).
此题考查了四边形综合题,利用待定系数法求一次函数的解析式,正方形的性质,坐标与图形的特点,三角形面积的求法,勾股定理等知识点,第(3)问难度较大,运用了分类讨论的思想和数形结合的思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,由圆周角定理的推论得,进而CE=AD=1,由直径所对的圆周角是直角,有勾股定理即可求得AC的长.
【详解】
如图,以B为圆心,BA长为半径作圆,延长AB交⊙B于E,连接CE,
∵AB=BC=BD=2,
∴C,D在⊙B 上,
∵AB∥CD,
∴,
∴CE=AD,
∵AD=1,
∴CE=AD=1,AE=AB+BE=2AB=4,
∵AE是⊙B的直径,
∴∠ACE=90º,
∴AC==,
故答案为.
本题借助于圆的模型把三角形的问题转化为圆的性质的问题,再解题过程中需让学生体会这种转化的方法.
20、且
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.
【详解】
解:根据题意得:
计算得出: x≥-2且x≠1.
故答案是: x≥-2且x≠1.
本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.
21、1.
【解析】
根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.
解:∵直线y=kx+b与直线y=2x+1平行,
∴k=2,
把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=1.
故答案为1.
22、①②④
【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC-BE=CD-DF,
∴CE=CF,
∴①说法正确;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②说法正确;
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③说法错误;
∵EF=2,
∴CE=CF=,
设正方形的边长为a,
在Rt△ADF中,
AD2+DF2=AF2,即a2+(a-)2=4,
解得a=,
则a2=2+,
S正方形ABCD=2+,
④说法正确,
故答案为①②④.
本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.
23、20:15:1.
【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据三角形的面积公式求出斜边上的高,然后计算即可.
【详解】
解:设三角形的三边分别为3x、4x、5x,
∵(3x)2+(4x)2=25x2=(5x)2,
∴这个三角形是直角三角形,
设斜边上的高为h,
则×3x×4x=×5x×h,
解得,h=,
则这个三角形的三边上的高之比=4x:3x:=20:15:1,
故答案为:20:15:1.
本题考查的是勾股定理的逆定理、三角形的面积计算,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
二、解答题(本大题共3个小题,共30分)
24、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
【解析】
(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
(1)画出图形,观察图形可得出结论;
(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.
【详解】
解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,
由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.
∵点C的坐标为(-1,1),点D的坐标为(1,1),
∴点C′的坐标为(-1,1),点D′的坐标为( ,1),
∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,
∴点,,中,在图形G上的点是,;
(1)点A和四边形CDEF的“中点形”是四边形.
各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).
(3)∵点B的横坐标为b,
∴点B的坐标为(b,1b).
当点B和四边形CDEF的中间点在边EF上时,有 ,
解得:-1≤b≤0;
当点B和四边形CDEF的中间点在边DE上时,有 ,
解得:1≤b≤1,
综上所述:点B的横坐标b的取值范围为-1≤b≤0 或 1≤b≤1.
故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.
25、 (1) A,B两种品牌的教学设备分别为20套,30套; (2) 至多减少1套.
【解析】
(1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;
(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.
【详解】
(1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得
,
解得:.
答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;
(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得
1.5(20-a)+1.2(30+1.5a)≤69,
解得:a≤1.
答:A种设备购进数量至多减少1套.
26、(1)1;(2)见解析
【解析】
分析:(1)根据绝对值的性质,二次根式的性质和化简,乘方的意义,直接计算并化简即可;
(2)根据矩形的性质,得到∠B=∠C=90°,AB=CD,然后根据HL证明Rt△ABF≌Rt△DCE,进而根据全等三角形的性质得到结论.
详解:(1)原式=;
(2)∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,
∵AF=DE,∴Rt△ABF≌Rt△DCE,∴BF=EC,∴BE=CF.
点睛:此题猪腰考查了实数的运算和矩形的性质的应用,解(1)的关键是熟记绝对值的性质,二次根式的性质和化简,乘方的意义,解(2)的关键是灵活运用矩形的性质证明Rt△ABF≌Rt△DCE.
题号
一
二
三
四
五
总分
得分
A
B
进价(万元/套)
1.5
1.2
售价(万元/套)
1.65
1.4
相关试卷
这是一份福建省三明建宁县联考2024-2025学年九上数学开学检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届甘肃省庆阳市环县九上数学开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省庆阳市合水县九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。