甘肃省庆阳市陇东院附属中学2024年数学九上开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要得到函数y=﹣6x+5的图象,只需将函数y=﹣6x的图象( )
A.向左平移5个单位 B.向右平移5个单位
C.向上平移5个单位 D.向下平移5个单位
2、(4分)在一次学生田径运动会上.参加男子跳高的15名运动员的成绩如下表所示:
这些运动员跳高成绩的中位数和众数是( )
A.1.65,1.70B.1.70,1.70C.1.70,1.65D.3,4
3、(4分)下列说法,你认为正确的是( )
A.0 的倒数是 0B.3-1=-3C.是有理数D. 3
4、(4分)下列几红数中,是勾股数的有( ).
①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④、2、.
A.1组B.2组C.3组D.4组
5、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
A.=B.=
C.=D.=
6、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
A.B.C.D.
7、(4分)若x≤0,则化简|1﹣x|﹣的结果是( )
A.1﹣2xB.2x﹣1C.﹣1D.1
8、(4分)如图,直线经过点A(a,)和点B(,0),直线经过点A,则当时,x的取值范围是( )
A.x>-1B.x<-1C.x>-2D.x<-2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.则∠CDF等于_____.
10、(4分)梯形ABCD中,AD∥BC,E在线段AB上,且2AE=BE,EF∥BC交CD于F,AD=15,BC=21,则EF=__________.
11、(4分)如图,在菱形中,,菱形的面积为15,则菱形的对角线之和为__.
12、(4分)计算:(π﹣3.14)0+3﹣1=_____.
13、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
(1)求直线OB的解析式及线段OE的长.
(2)求直线BD的解析式及点E的坐标.
15、(8分)已知:如图,在四边形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求证:四边形CDEF是平行四边形;
(2)填空:
①当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是矩形;
②当四边形ABCD满足条件 时(仅需一个条件),四边形CDEF是菱形.
16、(8分)如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点上.若,,求BF的长.
17、(10分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调査了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.
18、(10分)如图,直线l 在平面直角坐标系中,直线l与y轴交于点A,点B(-3,3)也在直线1上,将点B先向右平移1个单位长度、再向下平移2个单位长度得到点C,点C恰好也在直线l上.
(1)求点C的坐标和直线l的解析式
(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l上;
(3)已知直线l:y=x+b经过点B,与y轴交于点E,求△ABE的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线为和的交点是,过点分别作轴、轴的垂线,则不等式的解集为__________.
20、(4分)若一个多边形的内角和与外角和之和是1800°,则此多边形是___边形.
21、(4分)若关于x的分式方程=有增根,则m的值为_____.
22、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.
23、(4分)如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D. 若∠BAC=40°,则AD弧的度数是___度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形 ABCD 是正方形,点 E是 BC边上任意一点, AEF 90°,且EF 交正方形外角的平分线 CF 于点 F.求证:AE=EF.
25、(10分)解不等式组:,并把解集在数轴上表示出来.
26、(12分)如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
平移后相当于x不变y增加了5个单位,由此可得出答案.
【详解】
解:由题意得x值不变y增加5个单位
应沿y轴向上平移5个单位.
故选C.
本题考查一次函数图象的几何变换,注意平移k值不变的性质.
2、C
【解析】
根据中位数的定义与众数的定义,结合图表信息解答.
【详解】
15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,
所以中位数是1.70,
同一成绩运动员最多的是1.1,共有4人,
所以,众数是1.1.
因此,中位数与众数分别是1.70,1.1.
故选:C.
3、D
【解析】
根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.
【详解】
A.1没有倒数,所以A选项错误;
B.3﹣1,所以B选项错误;
C.π是无理数,所以C选项错误;
D.3,所以D选项正确.
故选D.
本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.
4、B
【解析】
勾股数是满足a2+b2=c2 的三个正整数,据此进行判断即可.
【详解】
解:∵满足a2+b2=c2 的三个正整数,称为勾股数,
∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).
故选:B.
本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.
5、B
【解析】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
【详解】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
故选B.
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
6、D
【解析】
根据等边三角形的性质和平移的性质即可得到结论.
【详解】
解:∵△OAB是等边三角形,
∵B的坐标为(2,0),
∴A(1,),
∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
∴A′的坐标(4,),
故选:D.
本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
7、D
【解析】
试题分析:根据x≤0,可知-x≥0,因此可知1-x≥0,然后根据可求解为|1﹣x|﹣=1-x+x=1.
故选:D
8、A
【解析】
先求出点A坐标,再结合图象观察出直线直线在直线下方的自变量x的取值范围即可.
【详解】
把A(a,-2)代入y2=2x,得-2=2a,
解得:a=-1,
所以点A(-1,-2),
观察图象可知当x>-1时,,
故选A.
本题考查了一次函数与一元一次不等式,观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.注意数形结合思想的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75°
【解析】
根据菱形的性质求出∠ADC=110°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.
【详解】
解:连接BD,BF,
∵∠BAD=70°,
∴∠ADC=110°,
又∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA=35°,
∴∠CDF=110°-35°=75°.
故答案为75°.
此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.
10、17
【解析】
过作构造平行四边形及相似三角形,利用平行四边形及相似三角形的性质可得答案.
【详解】
如图,过作交于,交于,因为AD∥BC,EF∥BC,
所以四边形 四边形,四边形都为平行四边形,则,
因为,所以,
因为EF∥BC,所以,所以,
因为2AE=BE,,,
所以,所以,所以.
故答案为:.
本题考查等腰梯形中通过作腰的平行线构造平行四边形及相似三角形,考查平行四边形的性质及相似三角形的性质,掌握这些性质是解题的关键.
11、
【解析】
由菱形的性质得出,,,由勾股定理和良宵美景得出OA2+OB2=16①,2OB×OB=15②,①+②得:(OA+OB)2=31,即可得出结果.
【详解】
解:四边形是菱形,
,,,
,菱形的面积为15,
①,,
②,
①②得:,
,
;
故答案为:.
本题考查了菱形的性质、勾股定理、完全平方公式;熟练掌握菱形的性质是解题的关键.
12、
【解析】
根据零指数幂和负指数幂运算法则进行计算即可得答案.
【详解】
原式=1+=.
故答案为
主要考查了零指数幂,负指数幂的运算.负指数为正指数的倒数;任何非0数的0次幂等于1.
13、
【解析】
分析:本题考查的是菱形的面积问题,菱形的面积即等于对角线积的一半,也等于底乘以高.
解析:∵四边形ABCD是菱形,AC=8,DB=6,∴菱形面积为24,设AC与BD相较于点O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因为菱形面积为AB×DH=24,∴DH=.
故答案为.
三、解答题(本大题共5个小题,共48分)
14、(1)直线OB的解析式为,;(2)直线BD的解析式为,.
【解析】
(1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
(2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E点坐标.
【详解】
解:(1)设直线OB的解析式为,
将点代入中,得,
∴,
∴直线OB的解析式为.
∵四边形OABC是矩形.且,
∴,,
∴,.
根据勾股定理得,
由折叠知,.
∴
(2)设D(0,t)
,
∴,
由折叠知,,,
在中,,
根据勾股定理得,
∴,
∴,
∴,.
设直线BD的解析式为.
∵,
∴,
∴,
∴直线BD的解析式为.
由(1)知,直线OB的解析式为.
设点,
根据的面积得,
∴,
∴.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了矩形的性质和折叠的性质.
15、(1)详见解析;(2)①AD=BC;②AD⊥BC.
【解析】
(1)利用两组对边分别平行的四边形是平行四边形,可得四边形AECD和四边形BFDC都是平行四边形,再由一组对边平行且相等的四边形是平行四边形可得CDEF是平行四边形.(2)①当AD=BC时,四边形EFCD是矩形.理由是:对角线相等的平行四边形是矩形;②当AD⊥BC时,四边形EFCD是菱形.理由是:对角线互相垂直的平行四边形是菱形.
【详解】
解:
(1)证明:∵AB∥CD,CE∥AD,DF∥BC,
∴四边形AECD和四边形BFDC都是平行四边形,
∴AE=CD=FB,
∵AB=3CD,
∴EF=CD,
∴四边形CDEF是平行四边形.
(2)解:①当AD=BC时,四边形EFCD是矩形.
理由:∵四边形AECD和四边形BFDC都是平行四边形,
∴EC=AD,DF=BC,
∴EC=DF,
∵四边形EFDC是平行四边形,
∴四边形EFDC是矩形.
②当AD⊥BC时,四边形EFCD是菱形.
理由:∵AD∥CE,DF∥CB,AD⊥BC,
∴DF⊥EC,
∵四边形EFCD是平行四边形,
∴四边形EFCD是菱形.
故答案为AD=BC,AD⊥BC.
本题考查了平行四边形的性质和判定,矩形的判定及菱形的判定.熟练掌握相关定理是解题关键.
16、1.
【解析】
先求出BC′,再由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,运用勾股定理BF2+BC′2=C′F2求解.
【详解】
解:∵将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上
∴BC'=AB=3,CF=C'F
在Rt△BC'F中,C'F2=BF2+C'B2,
∴CF2=(9-CF)2+9
∴CF=5
∴BF=1.
本题考查折叠问题及勾股定理的应用,同时也考查了列方程求解的能力.解题的关键是找出线段的关系.
17、(Ⅰ)40,1;(Ⅱ)平均数是1.2,众数为1.2,中位数为1.2;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为3.
【解析】
(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;
(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;
(Ⅲ)利用总人数乘以对应的百分比即可求解.
【详解】
解:(Ⅰ)本次接受调查的初中学生人数为:4+8+12+10+3=40(人),
m=100×=1.
故答案是:40,1;
(Ⅱ)观察条形统计图,
∵,
∴这组数据的平均数是1.2.
∵在这组数据中,1.2出现了12次,出现的次数最多,
∴这组数据的众数为1.2.
∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.2,有,
∴这组数据的中位数为1.2.
(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h的学生人数占90%,
∴估计该校800名初中学生中,每天在校体育活动时间大于1h的人数约占90%.有.
∴该校800名初中学生中,每天在校体育活动时间大于1h的学生人数约为3.
本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
18、(1)(-2,1),y=-2x-3(2)点D在直线l上,理由见解析(3)13.5
【解析】
(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程
(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可
(3)根据点B的坐标求得直线l的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答
【详解】
(1)∵B(-3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,
∴-3+1=-2,3-2=1,
∴C的坐标为(-2,1)
设直线l的解析式为y=kx+c,
∵点B,C在直线l上
代入得
解得k=-2,c=-3,
∴直线l的解析式为y=-2x-3
(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(-2,1),
∴-2-3=-5,1+6=7
∴D的坐标为(-5,7)
代入y=-2x-3时,左边=右边,
即点D在直线l上
(3)把B的坐标代入y=x+b得:3=-3+b,
解得:b=6
∴y=x+6,
∴E的坐标为(0,6),
∵直线y=-2x-3与y轴交于A点,
∴A的坐标为(0,-3)
∴AE=6+3=9;
∵B(-3,3)
∴△ABE的面积为×9×|-3|=13.5
此题考查一次函数图象与几何变换,利用平移的性质是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
根据一元一次函数和一元一次不等式的关系,从图上直接可以找到答案.
【详解】
解:由,即函数的图像位于的图像的上方,所对应的自变量x的取值范围,即不等式的解集,解集为.
本题考查了一次函数与不等式的关系,因此数形结合成为本题解答的关键.
20、十
【解析】
试题分析:设所求n边形边数为n,先根据多边形的外角和为360度得到多边形的内角和,再根据多边形的内角和公式,即可得到结果.
由题意得多边形的内角和为1800°-360°=1440°,
设所求n边形边数为n,则180°(n-2)=1440°,解得n=10,
则此多边形是十边形.
考点:本题考查的是多边形的内角和公式,多边形的外角和
点评:解答本题的关键是熟练掌握多边形的内角和公式:180°(n-2),任意多边形的外角和均是360度,与边数无关.
21、3
【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.
【详解】
解:去分母得:3x=m+3,
由分式方程有增根,得到x﹣2=0,即x=2,
把x=2代入方程得:6=m+3,
解得:m=3,
故答案为:3
此题考查分式方程的增根,解题关键在于得到x的值.
22、50
【解析】
根据频数与频率的数量关系即可求出答案.
【详解】
解:设被调查的学生人数为x,
∴,
∴x=50,
经检验x=50是原方程的解,
故答案为:50
本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.
23、140
【解析】
首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得AD弧的度数.
【详解】
连接AD、OD,
∵AB为直径,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴∠BAD=∠CAD=∠BAC=20°,BD=DC,
∴∠ABD=70°,
∴∠AOD=140°
∴AD弧的度数为140°;故答案为140.
本题考查等腰三角形的性质和圆周角定理,解题的关键是掌握等腰三角形的性质和圆周角定理.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
【详解】
证明:在AB上截取BM=BE,连接ME,
∵∠B=90°,
∴∠BME=∠BEM=45°,
∴∠AME=135°
∵CF是正方形ABCD的外角的角平分线,
∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,
∵AEF 90°
∴∠AEB+=90°
又∠AEB+=90°,
∴
∵AB=BC,BM=BE,
∴AM=EC,
在△AME和△ECF中
,
∴△AME≌△ECF(ASA),
∴AE=EF.
本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
25、
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
则不等式组的解集为,
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.
26、见详解.
【解析】
结合正方形的性质利用AAS可证,由全等三角形对应边相等的性质易证结论.
【详解】
证明:四边形ABCD是正方形
在和中,
本题主要考查了全等三角形的判定与性质,灵活的利用正方形的性质及平行线的性质确定全等的条件是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(m)
1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
甘肃省兰州市联片2025届数学九上开学质量跟踪监视试题【含答案】: 这是一份甘肃省兰州市联片2025届数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京教育院附属中学2024年数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份北京教育院附属中学2024年数学九上开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省广州大附属中学九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024年广东省广州大附属中学九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。