甘肃省庆阳市庙渠初级中学2025届数学九年级第一学期开学质量检测试题【含答案】
展开这是一份甘肃省庆阳市庙渠初级中学2025届数学九年级第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一次函数y=-3x+2的图象不经过( )
A.第四象限B.第三象限C.第二象限D.第一象限
2、(4分)一组数据 1,2,3,4,5 的方差与下列哪组数据的方差相同的是( )
A.2,4,6,8,10 B.10,20,30,40,50
C.11,12,13,14,15 D.11,22,33,44,55
3、(4分)若一次函数的图象如图所示,则不等式的解集为( )
A.B.C.D.
4、(4分)多项式与的公因式是( )
A.B.C.D.
5、(4分)均匀地向一个容器注水,最后将容器注满在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是
A.B.C.D.
6、(4分)下列曲线中,不能表示是的函数的是( )
A.B.C.D.
7、(4分)下列等式中,不成立的是
A.B.
C.D.
8、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为( )
A.40°B.50°C.60°D.70°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.
10、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.
11、(4分)若分式的值为零,则x=___________。
12、(4分)如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.
13、(4分)已知不等式组的解集为,则的值是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.
(1)求证:四边形PMEN是平行四边形;
(2) 当AP为何值时,四边形PMEN是菱形?并给出证明。
15、(8分)一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?
16、(8分)某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产A、B两种产品共100件.生产一件产品所需要的原料及生产成本如下表所示:
(1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.
(2)设生产A、B两种产品的总成本为y元,其中生产A产品x件,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?
17、(10分)如图,是边长为的等边三角形.
(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.
(2)当时,求的值.
(3)求的面积与之间的函数关系式.是的一次函数吗?
18、(10分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
(1)求一次函数和反比例函数解析式.
(2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
(3)根据图象,直接写出不等式的解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:
请你根据表中数据选一人参加比赛,最合适的人选是________.
20、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.
21、(4分)写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.
22、(4分)如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
23、(4分)关于的方程有实数根,则的取值范围是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)因式分解:(x²+4)²-16x²;(2)先化简.再从-1,1,2选取一个合适的数代入求值.
25、(10分)在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.
(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;
(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;
(3)当点B,E,F在一条直线上时,求∠CBE的度数.(直接写出结果即可)
26、(12分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据一次函数的图像与性质,结合k=-3<0,b=2>0求解即可.
【详解】
∵k=-3<0,b=2>0,
∴一次函数y=-3x+2的图象经过一二四象限,不经过第三象限.
故选B.
题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.
2、C
【解析】
根据方差的性质即可解答本题.
【详解】
C选项中数据是在数据 1,2,3,4,5上都加10,故方差保持不变.
故选:C.
本题考查了方差,一般一组数据加上(减去)相同的数后,方差不变.
3、C
【解析】
直接根据图像在x轴上方时所对应的x的取值范围进行解答即可.
【详解】
由图像可知,不等式的解集为:
故答案选:C
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k≠0)在x轴上(或下)方部分所有的点的横坐标所构成的集合.
4、B
【解析】
直接将原式分别分解因式,进而得出公因式即可.
【详解】
解:∵a2-21=(a+1)(a-1),a2-1a=a(a-1),
∴多项式a2-21与a2-1a的公因式是a-1.
故选:B.
此题主要考查了公因式,正确将原式分解因式是解题的关键.
5、D
【解析】
根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断即可.
【详解】
注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,
由此可知这个容器下面容积较大,中间容积最大,上面容积最小,
故选D.
本题考查了函数的图象,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.
6、D
【解析】
在函数图像中,对于的取值范围内的任意一点,通过这点作轴的垂线,则垂线与图像只有一个交点,据此判断即可.
【详解】
解:显然A、B、C中,对于自变量的任何值,都有唯一的值与之相对应,是的函数;D中存在x的值,使有二个值与之相对应,则不是的函数;
故选:D.
本题主要考查了函数的定义,在定义中特别要注意,对于的每一个值,都有唯一的值与其对应.
7、D
【解析】
根据不等式的性质,对选项进行求解即可.
【详解】
解:、,故成立,不合题意;
、,故成立,不合题意;
、,故成立,不合题意;
、,故不成立,符合题意.
故选:.
本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.
8、A
【解析】
首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.
【详解】
∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,
∴四边形ABCD是矩形,
∵∠OAD=50°,
∴∠OAB=40°.
故选:A.
本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
故答案为x>1.
10、1
【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.
【详解】
Rt△ACD中,AC=AB=4cm,CD=3cm;
根据勾股定理,得:AD==5(cm);
∴AD+BD-AB=1AD-AB=10-8=1cm;
故橡皮筋被拉长了1cm.
故答案是:1.
此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.
11、1
【解析】
根据分式的值为零的条件可以求出x的值.
【详解】
解: ∵分式的值为零
∴
∴且
∴ 且
∴x=1
故答案为:x=1
若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.
12、x > 1;
【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.
【详解】
∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,
∴不等式ax>kx+b的解集为x>1,
故答案为x>1.
本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.
13、
【解析】
根据不等式的解集求出a,b的值,即可求解.
【详解】
解得
∵解集为
∴=1,3+2b=-1,
解得a=1,b=-2,
∴=2×(-3)=-6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)当PA=5时,四边形PMEN为菱形,理由见解析.
【解析】
分析:(1)用三角形的中位线定理证明四边形PMEN的两组对边分别平行;(2)由(1)得四边形PMEN是平行四边形,只需证PM=PN,即PC=PD,故要证△APD≌△BPC.
详解:(1)∵M,E分别为PD,CD的中点,∴ME∥PC,
同理可证:ME∥PD,
∴四边形PMEN为平行四边形;
(2)当PA=5时,四边形PMEN为菱形.
理由:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,
∵AP=5,AB=CD=10,∴AP=BP,
在△APD和△BPC中,
AP=BP,∠A=∠B,AD=BC,
∴△APD≌△BPC(SAS),∴PD=PC,
∵M,N,E分别是PD,PC,CD的中点,
∴EN=PM=PD,PN=EM=PC,∴PM=EM=EN=PN,
∴四边形PMEN是菱形.
点睛:本题考查了平行四边形,菱形的判定和矩形的性质,三角形的中位定理反应了两条线段之间的数量关系与位置关系,所以,当题中有多个中点时,常常考虑用三角形的中位线来解题.
15、实际每天修路1米.
【解析】
首先设原来每天修路x米,则实际每天修路(1+50%)x米,根据题意可得等量关系:原来修3000米的时间-实际修3000米的时间=2天,根据等量关系列出方程即可.
【详解】
设原来每天修路x米,则实际每天修路(1+50%)x米,
根据题意得:-=2,
解得:x=500,
经检验,x=500是原分式方程的解,
∴(1+50%)x=(1+50%)×500=1.
答:实际每天修路1米.
本题考查的知识点是分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,列出方程,注意不要忘记检验.
16、(1)生产A、B产品分别为24件,76件;25件,75件;1件,2件.(2)17920元.
【解析】
(1)设生产A产品x件,则生产B产品(100﹣x)件.依题意列出方程组求解,由此判断能否保证生产.
(2)设生产A产品x件,总造价是y元,当x取最大值时,总造价最低.
【详解】
解:(1)假设该厂现有原料能保证生产,且能生产A产品x件,则能生产B产品(100﹣x)件.
根据题意,有,
解得:24≤x≤1,
由题意知,x应为整数,故x=24或x=25或x=1.
此时对应的100﹣x分别为76、75、2.
即该厂现有原料能保证生产,可有三种生产方案:
生产A、B产品分别为24件,76件;25件,75件;1件,2件.
(2)生产A产品x件,则生产B产品(100﹣x)件.根据题意可得
y=120x+200(100﹣x)=﹣80x+20000,
∵﹣80<0,
∴y随x的增大而减小,从而当x=1,即生产A产品1件,B产品2件时,生产总成本最底,最低生产总成本为y=﹣80×1+20000=17920元.
本题是方案设计的题目,考查了一次函数的应用及一元一次不等式组的应用的知识,基本的思路是根据不等关系列出不等式(组),求出未知数的取值,根据取值的个数确定方案的个数,这类题目是中考中经常出现的问题,需要认真领会.
17、(1),是的一次函数,,b=0;(2)x=2;(3),不是的一次函数.
【解析】
(1)根据勾股定理计算h的长,可得结论;
(2)直接将h的值代入可得结论;
(3)根据三角形面积公式计算可得结论.
【详解】
解:(1)因为边上的高也是边上的中线,所以,.在中,由勾股定理得,
即,
所以是的一次函数,且,b=0;
(2)h=时,;x=2;
(3)因为,所以不是的一次函数.
本题主要考查了等边三角形的性质,三角形的面积,一次函数的性质,能灵活应用这些性质是解题的关键.
18、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
【详解】
(1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
∴b=,k=﹣6
∴一次函数解析式y=﹣,反比例函数解析式y=.
(2)根据题意得: ,
解得: ,
∴S△ABF=×4×(4+2)=12
(3)由图象可得:x<﹣2或0<x<4
本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、丙
【解析】
分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
详解:∵=5.1, =4.7, =4.5,=5.1,
∴=>>,
∴最合适的人选是丙.
故答案为:丙.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、100°
【解析】
由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠A=∠C,∠A+∠B=180°,
∵∠A+∠C=160°,
∴∠A=∠C=80°,
∴∠B=180°﹣∠A=100°;
故答案为:100°.
本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.
21、y=-x-1
【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.
【详解】
设一次函数解析式为,
随的增大而减小,
,故可取,
解析式为,
函数图象过点,
,解得,
.
故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).
本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.
22、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
23、k≤2
【解析】
当k-1=0时,解一元一次方程可得出方程有解;当k-1≠0时,利用根的判别式△=16-2k≥0,即可求出k的取值范围.综上即可得出结论.
【详解】
当k-1=0,即k=1时,方程为2x+1=0,
解得x=-,符合题意;
②当k-1≠0,即k≠1时,△=22-2(k-1)=16-2k≥0,
解得:k≤2且k≠1.
综上即可得出k的取值范围为k≤2.
故答案为k≤2.
本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2) .
【解析】
(1)先用平方差公式分解,再用完全平方公式二次分解;
(2)把除法转化为乘法,并把分子、分母分解因式约分,然后从-1,1,2选取一个使原分式有意义的数代入计算即可.
【详解】
(1)(x²+4)²-16x²
=(x²+4+4x)(x²+4-4x)
=(x+2)²(x-2)²;
(2)原式=
,
由题意,x≠±2且x≠1,
∴当x=-1时,原式= .
本题考查了因式分解,分式的化简求值,熟练掌握因式分解的方法是解(1)的关键,熟练掌握分式的运算法则是解(2)的关键.
25、(1)EF=BE;(2)EF=BE,理由见解析;(3)当B,E,F在一条直线上时,∠CBE=22.5°
【解析】
(1)证明△ECF是等腰直角三角形即可;
(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明BE=DE,△DEF是等腰直角三角形即可;
(3)图形如图2所示:(1)中的结论仍然成立,即EF=BE.只要证明∠CBF=∠CFB即可.
【详解】
解:(1)如图1中,结论:EF=BE.
理由:
∵四边形ABCD是正方形,
∴BA=BC,∠ABC=∠BCD=90°,∠ACD=∠ACB=45°,
∵AE=EC,
∴BE=AE=EC,
∵CM平分∠DCG,
∴∠DCF=45°,
∴∠ECF=90°,
∵CF=AE,
∴EC=CF,
∴EF=EC,
∴EF=BE.
(2)图形如图2所示:(1)中的结论仍然成立,即EF=BE.
理由:连接ED,DF.
由正方形的对称性可知,BE=DE,∠CBE=∠CDE
∵正方形ABCD,
∴AB=CD,∠BAC=45°,
∵点F是正方形ABCD外角平分线CM上一点,
∴∠DCF=45°,
∴∠BAC=∠DCF,
由∵CF=AE,
∴△ABE≌△CDF(SAS),
∴BE=DF,∠ABE=∠CDF,
∴DE=DF,
又∵∠ABE+∠CBE=90°,
∴∠CDF+∠CDE=90°,
即∠EDF=90°,
∴△EDF是等腰直角三角形
∴EF=DE,
∴EF=DE.
(3)如图3中,当点B,E,F在一条直线上时,∠图形如图2所示:(1)中的结论仍然成立,即EF=BE.CBE=22.5°.
理由:∵∠ECF=∠EDF=90°,
∴E,C,F,D四点共圆,
∴∠BFC=∠CDE,
∵∠ABE=∠ADE,∠ABC=∠ADC=90°,
∴∠CDE=∠CBE,
∴∠CBF=∠CFB,
∵∠FCG=∠CBF+∠CFB=45°,
∴∠CBE=22.5°.
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,三角形的外角的性质等知识,解题的关键是正确寻找全等三角形解决问题.
26、BC边上的高AD=.
【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.
【详解】
作AD⊥BC于D,
由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,
∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,
解得,CD=1,
则BC边上的高AD=.
考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
题号
一
二
三
四
五
总分
得分
批阅人
甲种原料(单位:千克)
乙种原料(单位:千克)
生产成本(单位:元)
A产品
3
2
120
B产品
2.5
3.5
200
甲
乙
丙
丁
平均数/环
9.5
9.5
9.5
9.5
方差/环2
5.1
4.7
4.5
5.1
相关试卷
这是一份2024-2025学年甘肃省庆阳市名校九年级数学第一学期开学教学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份甘肃省庆阳市庙渠初级中学2023-2024学年九上数学期末监测模拟试题含答案,共8页。
这是一份甘肃省庆阳市庙渠初级中学2023-2024学年八年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了若是完全平方式,则的值为,如图,已知,是边的中点,则等于,下列图形中,不具有稳定性的是等内容,欢迎下载使用。