甘肃省武威市凉州区2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )
A.B.1C.D.
2、(4分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )
A.5B.8C.12D.14
3、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
A.x2B.x2或1x0
C.1x0D.x2或x1
4、(4分)下列各图象中,不是y关于x的函数图象的是( )
A.B.C.D.
5、(4分)下列运算错误的是( )
A.B.C.D.
6、(4分)若x-,则x-y的值为( )
A.2B.1C.0D.-1
7、(4分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:
小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是( )
A.①③B.①②③C.①②④D.①②③④
8、(4分)若方程有增根,则a的值为( )
A.1B.2C.3D.0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知点A(),B()是一次函数图象上的两点,当时,__.(填“>”、“=”或“<”)
10、(4分)人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:,,则成绩较为稳定的班级是_______.
11、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.
12、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
13、(4分)一组数据 ,则这组数据的方差是 __________ .
三、解答题(本大题共5个小题,共48分)
14、(12分)求不等式组的正整数解.
15、(8分)一次函数(a为常数,且).
(1)若点在一次函数的图象上,求a的值;
(2)当时,函数有最大值2,请求出a的值.
16、(8分) 为了开展“足球进校园”活动,某校成立了足球社团,计划购买10个足球和若干件(不少于10件)对抗训练背心.甲、乙两家体育用品商店出售同样的足球和对抗训练背心,足球每个定价120元,对抗训练背心每件15元,现两家商店搞促销活动,甲店:每买一个足球赠送一件对抗训练背心;乙店:按定价的九折优惠.
(1)设购买对抗训练背心x件,在甲商店付款为y甲元,在乙商店付款为y乙元,分别写出y甲,y乙与x的关系式;
(2)就对抗训练背心的件数讨论去哪家商店买合算?
17、(10分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士” 组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样 调查了全市 40 个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行
处理(设所测数据均为正整数),得频数分布表如下:
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= , b= , c= ;
(2)补充完整频数分布直方图;
(3)如果全市共有 300 个测量点,那么在这一时刻噪声声级小于 75dB 的测量点约有多少个?
18、(10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是 .
20、(4分)已知点M(m,3)在直线上,则m=______.
21、(4分)如图,把菱形沿折叠,使点落在上的点处,若,则的大小为 _____________.
22、(4分)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.
23、(4分)阅读后填空:
已知:如图,,,、相交于点.
求证:.
分析:要证,可先证;
要证,可先证;
而用______可证(填或或).
二、解答题(本大题共3个小题,共30分)
24、(8分)化简:.
25、(10分)某校为了解全校学生下学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:
根据以上图表信息,解答下列问题:
(1)表中a=___,b=___;
(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
(3)若该校共有1500名学生,请估计该校在下学期参加社区活动超过6次的学生有多少人?
26、(12分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.
(1)在图中,求证:,.
(2)在图中,仍有(1)中的,成立,请解答下面问题:
①若,,,求和的长;
②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.
【详解】
解:分三种情况:
①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,
过A作AF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠C+∠B=180°,
∵∠C=120°,
∴∠B=60°,
Rt△ABF中,∠BAF=30°,
∴BF=AB=1,AF=,
∴此时△ABE的最大面积为:×4×=2;
②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;
③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,
综上,△ABE的面积的最大值是2;
故选:D.
本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.
2、C
【解析】
经过观察5组自变量和相应的函数值得(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.
【详解】
∵(-1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12
∴这个计算有误的函数值是12,
故选C.
本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.
3、B
【解析】
根据交点坐标及图象的高低即可判断取值范围.
【详解】
要使,则一次函数的图象要高于反比例函数的图象,
∵两图象交于点A(2,1)、B(-1,-2),
∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
∴使的x的取值范围是:或.
故选:B.
本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
4、B
【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【详解】
解:由函数的定义可知,
每一个给定的x,都有唯一确定的y值与其对应的才是函数,
故选项A、C、D中的函数图象都是y关于x的函数,B中的不是,
故选:B.
主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
5、C
【解析】
根据二次根的运算法则对选项进行判断即可
【详解】
A. ,所以本选项正确
B. ,所以本选项正确
C. ,不是同类二次根式,不能合并,故本选项错误
D. ,所以本选项正确
故选C.
本题考查二次根,熟练掌握二次根式的性质和运算法则是解题关键
6、B
【解析】
直接利用二次根式的性质得出y的值,进而得出答案.
【详解】
解:∵与都有意义,
∴y=0,
∴x=1,
故选x-y=1-0=1.
故选:B.
此题考查二次根式有意义的条件,正确把握二次根式的定义是解题关键.
7、A
【解析】
根据条形统计图中的信息对4个结论进行判断即可.
【详解】
由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;
从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)
则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;
2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;
设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08
解得x0.09(负值已舍),即年平均增长约为9%,故④错误;
综上可得正确的是①②③.
故选:B.
此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.
8、A
【解析】
先去分母,根据方程有增根,可求得x=2,再求出a.
【详解】
可化为
x-1-a=3(x-2),
因为方程有增根,
所以,x=2,
所以,2-1-a=0,
解得a=1.
故选A
本题考核知识点:分式方程的增根. 解题关键点:理解增根的意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
试题解析:∵一次函数y=-1x+5中k=-1<0,
∴该一次函数y随x的增大而减小,
∵x1>x1,
∴y1<y1.
10、甲
【解析】
根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
【详解】
∵,,
∴s甲2<s乙2,
∴甲班成绩较为稳定,
故答案为:甲.
本题考查方差的定义与意义:它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
11、1
【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.
【详解】
如图,连接BE、DF交于点O.
∵四边形ABCD是正方形,
∴,.
∵是等腰直角三角形,
∴,,
∴.
在和△中,
∵,,,
∴,
∴.
∵
,
∴,
∴,,,,
∴.
故答案为1.
本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.
12、
【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
【详解】
解:直线向右平移个单位后的解析式为,
令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
所以直线与坐标轴所围成的三角形面积是.
故答案为:.
本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
13、1
【解析】
分析:先求出这5个数的平均数,然后利用方差公式求解即可.
详解:平均数为=(1+1+3+4+5)÷5=3,
S1= [(1-3)1+(1-3)1+(3-3)1+(4-3)1+(5-3)1]=1.
故答案为:1.
点睛:本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.
三、解答题(本大题共5个小题,共48分)
14、正整数解为3,1.
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
由①得:x>2,
由②得:x≤1,
∴原不等式组的解集为2<x≤1,
∴不等式组的正整数解为3,1.
本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
15、(1);(2)或.
【解析】
(1))把代入即可求出a;
(2)分①时和②时根据函数值进行求解.
【详解】
解:(1)把代入得,解得;
(2)①时,y随x的增大而增大,
则当时,y有最大值2,把,代入函数关系式得,解得;
②时,y随x的增大而减小,
则当时,y有最大值2,把代入函数关系式得,解得,所以或.
此题主要考查一次函数的图像,解题的关键是根据题意分情况讨论.
16、(1)y甲=1050+15x(x≥10);y乙=13.5x+1080(x≥10);(2)见解析.
【解析】
(1)在甲店购买的付款数=10个足球的总价+(x﹣10)件对抗训练背心的总价,把相关数值代入化简即可;
在乙店购买的付款数=10个足球的总价的总价×0.9+x件对抗训练背心×0.9;
(2)分别根据y甲=y乙时,y甲>y乙时,y甲<y乙时列出对应式子求解即可.
【详解】
(1)y甲=120×10+15(x﹣10)=1050+15x(x≥10);
y乙=120×0.9×10+15×0.9x=13.5x+1080(x≥10);
(2)y甲=y乙时,1050+15x=13.5x+1080,解得:x=20,即当x=20时,到两店一样合算;
y甲>y乙时,1050+15x>13.5x+1080,解得:x>20,即当x>20时,到乙店合算;
y甲<y乙时,1050+15x<13.5x+1080,解得:10≤x<20,即当10≤x<20时,到甲店合算.
本题考查了一次函数的应用,解答这类问题时,要先建立函数关系式,然后再分类讨论.
17、(1)a=8, b=12, c=0.3;(2)见解析;(3)90.
【解析】
(1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;
(2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;
(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.
【详解】
(1)根据频数与频率的正比例关系,可知 ,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;
(2)如图:
(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,
∴在这一时噪声声级小于75dB的测量点约有90个.
此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.
18、答案见解析
【解析】
试题分析:(2)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;
(2)分0<x≤2和x>2两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.
试题解析:(2)由题意知:
当0<x≤2时,y甲=22x;当2<x时,y甲=22+25(x﹣2)=25x+2.y乙=26x+3;
∴,;
(2)①当0<x≤2时,令y甲<y乙,即22x<26x+3,解得:0<x<;
令y甲=y乙,即22x=26x+3,解得:x=;
令y甲>y乙,即22x>26x+3,解得:<x≤2.
②x>2时,令y甲<y乙,即25x+2<26x+3,解得:x>3;
令y甲=y乙,即25x+2=26x+3,解得:x=3;
令y甲>y乙,即25x+2>26x+3,解得:0<x<3.
综上可知:当<x<3时,选乙快递公司省钱;当x=3或x=时,选甲、乙两家快递公司快递费一样多;当0<x<或x>3时,选甲快递公司省钱.
考点:一次函数的应用;分段函数;方案型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:连接DB,BD与AC相交于点M,
∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.
∵∠DAB=60°,∴△ADB是等边三角形.
∴DB=AD=1,∴BM=
∴AM=
∴AC=.
同理可得AE=AC=()2,AG=AE=()3,…
按此规律所作的第n个菱形的边长为()n-1
20、2
【解析】
把点M代入即可求解.
【详解】
把点M代入,
即3=2m-1,解得m=2,
故填:2.
此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.
21、
【解析】
根据菱形性质,得到∠ADC=∠B=70°,从而得出∠AED=∠ADE,又因为AD∥BC,得到∠DAE=∠AEB,进而求出 ∠ADE=∠AED=55°,从而得到∠EDC
【详解】
∵四边形ABCD为菱形,∴∠ADC=∠B=70°,AD∥BC,AD=AB
∵AD=AB=AE,∴∠AED=∠ADE
∵AD∥BC,∴∠DAE=∠AEB=70°
∴∠ADE=∠AED=(180°-∠DAE)÷2=55°
∴∠EDC=70°-∠ADE=70°-55°=15°
本题主要考查菱形的基本性质,在计算过程中综合运用了等边对等角,三角形内角和定理等知识点
22、1:1
【解析】
以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:
设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,
∵点B在直线AB上,点C、D在直线CD上,
∴1=3k, 解得:k= , ,
∴yAB=x, yCD=-x+3,
∴点P的坐标为( , ),
∴S△PBD :S△PAC= .
故答案是:1:1.
23、
【解析】
根据HL定理推出Rt△ABC≌Rt△DCB,求出∠ACB=∠DBC,再根据等角对等边证明即可.
【详解】
解:HL定理,理由是:
∵∠A=∠D=90°,
∴在Rt△ABC和Rt△DCB中
∴Rt△ABC≌Rt△DCB(HL),
∴∠ACB=∠DBC,
∴OB=OC,
故答案为:HL.
本题考查了全等三角形的判定定理和性质定理、等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
根据分式的运算法则即可取出答案.
【详解】
解:原式
.
本题考查了分式的化简及学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
25、(1)12,0.12;(2)详见解析;(3)840.
【解析】
(1)被调查学生数为50人,当时,频率为,则频数为,故,当时,频数为6,则频率为。所以,.
(2)由(1)知,补全频数分布直方图即可.
(3)先求出参加活动超过6次的频率,再根据样本估计总体.
【详解】
(1)12,0.12;
(2)如图所示:
;
(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1500×(1-0.20-0.24)=840(人),
答:该校在上学期参加社区活动超过6次的学生有840人.
本题主要考查数据的处理和数据的分析.
26、(1)见解析;(2)①,,②,,见解析.
【解析】
(1)由平行线的性质和角平分线的性质即可证明结论;
(2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;
②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.
【详解】
解:(1)∵四边形是平行四边形,∴,.
∴,
又∵、是与的角平分线,
∴,即∠AEB=90°,
∴,
∵,∴,
又∵是的角平分线、
∴,
∴.
同理可得.
∴;
(2)解:①由已知可得,、仍是与的角平分线且,
,,,
.
如图,过点作交延长线于点.
∵,,.
.
∵,,,
,,,
.
②,(类似答案均可).
若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;
若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,
又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.
本题考查了平行四边形的性质、角平分线的概念、平行线的性质、垂直的定义、等腰三角形和等边三角形的判定和性质、勾股定理和30°角的直角三角形的性质,考查的知识点多,综合性强,解题的关键是熟练掌握上述知识,弄清题意,理清思路,注重知识的前后联系.
题号
一
二
三
四
五
总分
得分
批阅人
x
-1
0
1
2
3
y
2
5
8
12
14
组别
噪声声级分组
频数
频率
1
44.5~59.5
4
0.1
2
59.5~74.5
a
0.2
3
74.5~89.5
10
0.25
4
89.5~104.5
b
c
5
104.5~119.5
6
0.15
合计
40
1.00
活动次数x
频数
频率
0
0.20
3
0.24
6
0.32
9
b
12
0.08
15
n
甘肃省庆阳镇原县联考2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份甘肃省庆阳镇原县联考2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
甘肃省会宁县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份甘肃省会宁县2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
成都十八中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份成都十八中学2024-2025学年数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。