![广东省2025届九年级数学第一学期开学质量检测模拟试题【含答案】01](http://www.enxinlong.com/img-preview/2/3/16264148/0-1729210641010/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2025届九年级数学第一学期开学质量检测模拟试题【含答案】02](http://www.enxinlong.com/img-preview/2/3/16264148/0-1729210641123/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省2025届九年级数学第一学期开学质量检测模拟试题【含答案】03](http://www.enxinlong.com/img-preview/2/3/16264148/0-1729210641146/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省2025届九年级数学第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列根式中属最简二次根式的是( )
A.B.C.D.
2、(4分)如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是( )
A.x>3B.x<3C.x>5D.x<5
3、(4分)函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是( )
A.B.C.D.
4、(4分)实数 x 取任何值,下列代数式都有意义的是( )
A.B.C.D.
5、(4分)关于x的方程无解,则m的值为( )
A.﹣5 B.﹣8 C.﹣2 D.5
6、(4分)若二次根式有意义,则a的取值范围是( )
A.a<3B.a>3C.a≤3D.a≠3
7、(4分)现定义运算“★”,对于任意实数,,都有,如,若,则实数的值为( )
A.-4或-1B.4或-1C.4或-2D.-4或2
8、(4分)在中,,,,则的长为( )
A.3B.2C.D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简3﹣2=_____.
10、(4分)如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.
11、(4分)将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.
12、(4分)某种感冒病毒的直径是0.000 000 12米,用科学记数法表示为 米.
13、(4分)平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿边BC向点C运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动设点F的运动时间为t秒.
(1)如图1,连接DE,AF.若DE⊥AF,求t的值;
(2)如图2,连结EF,DF.当t为何值时,△EBF∽△DCF?
15、(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为
(1)用含x的代数式表示第3年的可变成本为 万元;
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.
16、(8分)在学习了正方形后,数学小组的同学对正方形进行了探究,发现:
(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N . 此时,有结论AE=MN,请进行证明;
(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD, MN 与BD交于点G,连接BF,此时有结论:BF= FG,请利用图2做出证明.
(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系.
图1 图2 图3
17、(10分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
求证:四边形DEFG是平行四边形.
18、(10分)(1)先化简代数式.求:当时代数式值.
(2)解方程:.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)不等式组的整数解是__________.
20、(4分)若是关于的一元二次方程的一个根,则____.
21、(4分)已知正n边形的一个外角是45°,则n=____________
22、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
23、(4分)函数有意义,则自变量x的取值范围是___.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知菱形的对角线相交于点,延长至点,使,连结.
求证:.
当时,四边形为菱形吗?请说明理由.
25、(10分)(1)因式分解:x2y﹣2xy2+y3
(2)解不等式组:
26、(12分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
(1)写出男生鞋号数据的平均数,中位数,众数;
(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.
考点:最简二次根式
2、D
【解析】
由图象可知:A(1,0),且当x<1时,y>0,即可得到不等式kx+b>0的解集是x<1,即可得出选项.
【详解】
解:∵一次函数y=kx+b的图象经过A、B两点,
由图象可知:A(1,0),
根据图象当x<1时,y>0,
即:不等式kx+b>0的解集是x<1.
故选:D.
此题考查一次函数与一元一次不等式,解题关键在于结合函数图象
3、D
【解析】
【分析】分两种情况分析:当k>0或当k<0时.
【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;
当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.
故选:D
【点睛】本题考核知识点:一次函数和反比例函数的图象. 解题关键点:理解两种函数的性质.
4、C
【解析】
根据二次根式有意义,被开方数大于等于0对各选项举例判断即可.
【详解】
解:A、由6+2x≥0得,x≥-3,
所以,x<-3时二次根式无意义,故本选项错误;
B、由2-x≥0得,x≤2,
所以,x>2时二次根式无意义,故本选项错误;
C、∵(x-1)2≥0,
∴实数x取任何值二次根式都有意义,故本选项正确;
D、由x+1≥0得,x≥-1,
所以,x<-1二次根式无意义,
又x=0时分母等于0,无意义,故本选项错误;
故选:C.
本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.
5、A
【解析】
解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.
6、C
【解析】
根据被开方数是非负数,可得答案.
【详解】
解:由题意得,
3−a⩾0,解得a⩽3,
故选:C.
本题主要考查了二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
7、B
【解析】
根据新定义a★b=a2-3a+b,将方程x★2=6转化为一元二次方程求解.
【详解】
依题意,原方程化为x2−3x+2=6,
即x2−3x−4=0,
分解因式,得(x+1)(x−4)=0,
解得x1=−1,x2=4.
故选B.
此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.
8、D
【解析】
根据,可得,再把AB的长代入可以计算出CB的长.
【详解】
解:∵csB=,
∴BC=AB•csB=6×=1.
故选:D.
此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接合并同类二次根式即可.
【详解】
原式=(3﹣2)=.
故答案为.
本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.
10、
【解析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.
【详解】
∵菱形ABCD的对角线长分别为a、b,AC⊥BD,
∴S四边形ABCD=
∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知
S四边形A1B1C1D1=S四边形ABCD=
…
则S四边形AnBnCnDn=S四边形ABCD=
故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.
故填:.
此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.
11、
【解析】
分析:直接根据“上加下减”的原则进行解答即可.
详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.
故答案为:y=-2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
12、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.0.00000012=.
13、(1,1)或(,)或(1,1)
【解析】
分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论
【详解】
∵点A的坐标为(1,0),
∴OA=1.
分三种情况考虑,如图所示.
①当OP1=AP1时,∵∠AOP1=45°,
∴△AOP1为等腰直角三角形.
又∵OA=1,
∴点P1的坐标为(1,1);
②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.
∵OP1=OA=1,
∴OB=BP1=,
∴点P1的坐标为(,);
③当AO=AP3时,△OAP3为等腰直角三角形.
∵OA=1,
∴AP3=OA=1,
∴点P3的坐标为(1,1).
综上所述:点P的坐标为(1,1)或(,)或(1,1).
故答案为:(1,1)或(,)或(1,1).
本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)t=1;(2)当时,△EBF∽△DCF;
【解析】
(1)利用正方形的性质及条件,得出△ABF≌△DAE,由AE=BF列式计算.
(2)利用△EBF∽△DCF,得出,列出方程求解.
【详解】
解:(1)∵DE⊥AF,
∴∠AOE=90°,
∴∠BAF+∠AEO=90°,
∵∠ADE+∠AEO=90°,
∴∠BAF=∠ADE,
又∵四边形ABCD是正方形,
∴AB=AD,∠ABF=∠DAE=90°,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(ASA)
∴AE=BF,
∴1+t=2t,
解得t=1;
(2)如图2,
∵四边形ABCD是正方形,
∴AB=BC=CD=4,
∵BF=2t,AE=1+t,
∴FC=4-2t,BE=4-1-t=3-t,
当△EBF∽△DCF时,
,
∴=,
解得,t1=,t2=(舍去),
故t=.
所以当t=时,△EBF∽△DCF.
本题主要考查了四边形的综合题,利用了全等三角形的判定和性质,相似三角形的判定和性质,难度一般.
15、(1)2.6(1+x)2;(2)10%.
【解析】
(1) 将基本等量关系“本年的可变成本=前一年的可变成本+本年可变成本的增长量”以及“本年可变成本的增长量=前一年的可变成本×可变成本平均每年增长的百分率”综合整理可得:本年的可变成本=前一年的可变成本×(1+可变成本平均每年增长的百分率). 根据这一新的等量关系可以由第1年的可变成本依次递推求出第2年以及第3年的可变成本.
(2) 由题意知,第3年的养殖成本=第3年的固定成本+第3年的可变成本. 现已知固定成本每年均为4万元,在第(1)小题中已求得第3年的可变成本与x的关系式,故根据上述养殖成本的等量关系,容易列出关于x的方程,解方程即可得到x的值.
【详解】
解:(1) ∵该养殖户第1年的可变成本为2.6万元,
又∵该养殖户的可变成本平均每年增长的百分率为x,
∴该养殖户第2年的可变成本为:2.6(1+x) (万元),
∴该养殖户第3年的可变成本为:[2.6(1+x)](1+x)=2.6(1+x)2 (万元).
故本小题应填:2.6(1+x)2.
(2) 根据题意以及第(1)小题的结论,可列关于x的方程:
4+2.6(1+x)2=7.146
解此方程,得
x1=0.1,x2=-2.1,
由于x为可变成本平均每年增长的百分率,x2=-2.1不合题意,故x的值应为0.1,即10%.
答:可变成本平均每年增长的百分率为10%.
本题考查了一元二次方程相关应用题中的“平均增长率”型问题. 对“平均增长率”意义的理解是这类应用题的难点. 这类实际问题中某量的增长一般分为两个阶段且每个阶段的实际增长率不同. 假设该量的值在保持某一增长率不变的前提下由原值增长两次,若所得的最终值与实际的最终值相同,则这一不变的增长率就是该量的“平均增长率”.
16、(1)证明见解析;
(2)证明见解析;
(3)AE与 MN的数量关系是:AE= MN ,BF与FG的数量关系是: BF= FG
【解析】
(1)作辅助线,构建平行四边形PMND,再证明△ABE≌△DAP,即可得出结论;
(2)连接AG、EG、CG,构建全等三角形和直角三角形,证明AG=EG=CG,再根据四边形的内角和定理得∠AGE=90°,在R△AGE中,利用直角三角形斜边上的中线等于斜边的一半得BF=AE,FG=AE,则BF=GF;
(3)①AE=MN,证明△AEB≌△NMQ;
②BF=FG,同理得出BF和FG分别是直角△AEB和直角△AGF斜边上的中线,则 BF=AE,FG=AE,所以BF=FG.
证明:
(1)在图1中,过点D作PD∥MN交AB于P,则∠APD=∠AMN
∵ 正方形ABCD
∴ AB = AD,AB∥DC,∠DAB =∠B = 90°
∴ 四边形PMND是平行四边形且PD = MN
∵ ∠B = 90° ∴∠BAE+∠BEA= 90°
∵MN⊥AE于F, ∴∠BAE+∠AMN = 90°
∴∠BEA =∠AMN =∠APD
又∵AB = AD,∠B =∠DAP = 90°
∴△ABE ≌ △DAP∴ AE = PD = MN
(2)在图2中连接AG、EG、CG
由正方形的轴对称性 △ABG ≌ △CBG∴ AG = CG,∠GAB=∠GCB
∵ MN⊥AE于F,F为AE中点∴ AG = EG
∴ EG = CG,∠GEC=∠GCE∴ ∠GAB=∠GEC
由图可知∠GEB+∠GEC=180°∴ ∠GEB+∠GAB =180°
又∵四边形ABEG的内角和为360°,∠ABE= 90°∴ ∠AGE = 90°
在Rt△ABE 和Rt△AGE中,AE为斜边,F为AE的中点,
∴BF=AE, FG= AE ∴BF= FG
(3)AE与 MN的数量关系是:AE= MN
BF与FG的数量关系是: BF= FG
“点睛”本题是四边形的综合题,考查了正方形、全等三角形、平行四边形的性质与判定,在有中点和直角三角形的前提下,可以利用直角三角形斜边上的中线等于斜边的一半来证明两条线段相等.
17、证明见解析.
【解析】
利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.
【详解】
证明:如图,连接ED、DG、GF、FE.
∵BD、CE是△ABC的两条中线,
∴点D、E分别是边AC、AB的中点,
∴DE∥CB,DE=CB;
又∵F、G分别是OB、OC的中点,
∴GF∥CB,GF=CB;
∴DE∥GF,且DE=GF,
∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).
考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
18、(1)2;(2).
【解析】
(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;
(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.
【详解】
(1)原式=
=
=
=
=,
当 时,
原式=;
(2),
两边都乘以x-2,得
3=2(x-2)-x,
解之得
x=7,
检验:当x=7时,x-2≠0,所以x=7是原方程的解.
本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、,,1
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.
【详解】
解:;
由①得:;
由②得:;
不等式组的解集为:;
所以不等式组的整数解为,,1,
故答案为:,,1.
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
20、0
【解析】
根据一元二次方程的解即可计算求解.
【详解】
把x=-2代入方程得,解得k=1或0,
∵k2-1≠0,k≠±1,
∴k=0
此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程二次项系数不为0.
21、8
【解析】
解:∵多边形的外角和为360°,正多边形的一个外角45°,
∴多边形得到边数360÷45=8,所以是八边形.
故答案为8
22、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
23、且
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件进行求解即可.
【详解】
要使在实数范围内有意义,
必须
所以x≥1且,
故答案为:x≥1且.
本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)详见解析.
【解析】
(1)根据菱形的四条边的对边平行且相等可得AB=CD,AB∥CD,再求出四边形BECD是平行四边形,然后根据平行四边形的对边相等证明即可;
(2)只要证明DC=DB,即证明△DCB是等边三角形即可解决问题;
【详解】
证明:四边形是菱形,
∴,,
又∵,
∴,,
∴四边形 是平行四边形,
∴;
解:结论:四边形是菱形.
理由:∵四边形是菱形,
∴,∵,
∴,是等边三角形,
∴,
∵四边形是平行四边形,
∴四边形是菱形.
考查了菱形的性质和判定,平行四边形的性质和判定,平行线的性质,熟记各图形的性质并准确识图是解题的关键.
25、(1)y(x﹣y)2;(2)﹣3<x<2
【解析】
(1)由题意对原式提取公因式,再利用完全平方公式分解即可;
(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
解:(1)原式=y(x2﹣2xy+y2)
=y(x﹣y)2;
(2),
由①得:x<2,
由②得:x>﹣3,
则不等式组的解集为:﹣3<x<2.
本题考查因式分解和解不等式组,熟练掌握提公因式法与公式法的综合运用以及解不等式组的方法是解答本题的关键.
26、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
【解析】
(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
【详解】
解:(1)由题意知:男生鞋号数据的平均数==24.11;
男生鞋号数据的众数为21;
男生鞋号数据的中位数==24.1.
∴平均数是24.11,中位数是24.1,众数是21.
(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
∴厂家最关心的是众数.
本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
鞋号
23.5
24
24.5
25
25.5
26
人数
3
4
4
7
1
1
广东省2024年九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份广东省2024年九年级数学第一学期开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省汕头市龙湖区九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2025届广东省汕头市龙湖区九年级数学第一学期开学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省普宁市九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2025届广东省普宁市九年级数学第一学期开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。