广东省潮阳区华侨中学2025届九年级数学第一学期开学监测试题【含答案】
展开这是一份广东省潮阳区华侨中学2025届九年级数学第一学期开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解我县2019年八年级末数学学科成绩,从中抽取200名八年级学生期末数学成绩进行统计分析,在这个问题中,样本是指( )
A.200
B.我县2019年八年级学生期末数学成绩
C.被抽取的200名八年级学生
D.被抽取的200名我县八年级学生期末数学成绩
2、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.线段B.直角三角形C.等边三角形D.平行四边形
3、(4分)美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在的称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体由脚底至肚脐的长度与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近就越给别人一种美的感觉. 某女士身高为,脚底至肚脐的长度与身高的比为为了追求美,地想利用高跟鞋达到这一效果 ,那么她选的高跟鞋的高度约为( )
A.B.C.D.
4、(4分)分式方程的解是( )
A.3B.-3C.D.9
5、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
6、(4分)小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:
那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是( )
A.众数,中位数B.中位数,方差C.平均数,中位数D.平均数,方差
7、(4分)如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )
A.5cmB.10cmC.14cmD.20cm
8、(4分)当分式有意义时,则x的取值范围是( )
A.x≠2B.x≠-2C.x≠D.x≠-
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")
10、(4分)在一列数2,3,3,5,7中,他们的平均数为__________.
11、(4分)在Rt△ABC中,∠B=90°,∠C=30°,AB=2,则BC的长为______.
12、(4分)方程x5=81的解是_____.
13、(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形, 使C点与AB边上的一点D重合.
(1)当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;
(2)在(1)的条件下,若DE=1,求△ABC的面积.
15、(8分)某商店第一次用6000元购进了练习本若干本,第二次又用6000元购进该款练习本,但这次每本进货的价格是第一次进货价格的1.2倍,购进数量比第一次少了1000本.
(1)问:第一次每本的进货价是多少元?
(2)若要求这两次购进的练习本按同一价格全部销售完毕后获利不低于4500元,问每本售价至少是多少元?
16、(8分)已知,直线y=2x-2与x轴交于点A,与y轴交于点B.
(1)如图①,点A的坐标为_______,点B的坐标为_______;
(2)如图②,点C是直线AB上不同于点B的点,且CA=AB.
①求点C的坐标;
②过动点P(m,0)且垂直与x轴的直线与直线AB交于点E,若点E不在线段BC上,则m的取值范围是_______;
(3)若∠ABN=45º,求直线BN的解析式.
17、(10分)如图,直线y=3x与反比例函数y=(k≠0)的图象交于A(1,m)和点B.
(1)求m,k的值,并直接写出点B的坐标;
(2)过点P(t,0)(-1≤t≤1)作x轴的垂线分别交直线y=3x与反比函数y=(k≠0)的图象于点E,F.
①当t=时,求线段EF的长;
②若0<EF≤8,请根据图象直接写出t的取值范围.
18、(10分)如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的方程无解,则m= .
20、(4分)已知等腰三角形两条边的长为4和9,则它的周长______.
21、(4分)如图△ABC中,∠BAC=90°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上,若AC=4,∠B=60∘,则CD的长为____
22、(4分)如图,O为数轴原点,数轴上点A表示的数是3,AB⊥OA,线段AB长为2,以O为圆心,OB为半径画弧交数轴于点C.则数轴上表示点C的数为_________.
23、(4分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
(1)补全条形统计图;
(2)求出扇形统计图中册数为4的扇形的圆心角的度数;
(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
25、(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.
(1)求这两年该县投入教育经费的年平均增长率;
(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.
26、(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:四边形PBQD是平行四边形;
(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合),设点P运动时间为t秒.
①请用t表示PD的长;②求t为何值时,四边形PBQD是菱形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据样本是总体中所抽取的一部分个体解答即可.
【详解】
本题的研究对象是:我县2019年八年级末数学学科成绩,因而样本是抽取200名八年级学生期末数学成绩.
故选:D.
本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2、A
【解析】
根据中心对称图形的定义逐项识别即可,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,旋转前后图形上能够重合的点叫做对称点.
【详解】
A. 既是轴对称图形,又是中心对称图形,符合题意;
B. 既不是轴对称图形,也不是中心对称图形,不符合题意;
C.是轴对称图形,不是中心对称图形,不符合题意;
D.不是轴对称图形是中心对称图形,不符合题意;
故选A.
本题考查了中心对称图形的识别,熟练掌握中心对称图形的定义是解答本题的关键.
3、C
【解析】
根据已知条件算出下半身身高,然后设选的高跟鞋的高度为xcm,根据比值是0.618列出方程,解方程即可
【详解】
根据已知条件得下半身长是160×0.6=96cm
设选的高跟鞋的高度为xcm,
有
解得x≈7.5
经检验x≈7.5是原方程的解
故选C
本题考查分式方程的应用,能够读懂题意列出方程是本题关键
4、A
【解析】
方程两边同时乘以x+3,化为整式方程,解整式方程后进行检验即可得.
【详解】
方程两边同时乘以x+3,得
x2-9=0,
解得:x=±3,
检验:当x=3时,x+3≠0,当x=-3时,x+3=0,
所以x=3是原分式方程的解,
所以方程的解为:x=3,
故选A.
本题考查了解分式方程,熟练掌握解分式方程的方法以及注意事项是解题的关键.
5、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
6、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,
则总人数为:5+15+10=30,
故该组数据的众数为14岁,中位数为:=14岁,
即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,
故选A.
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
7、D
【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,,,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,=3cm,
根据勾股定理得, ,所以,这个菱形的周长=4×5=20cm.
故选:D.
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
8、B
【解析】
根据分母不为零列式求解即可.
【详解】
分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】
根据方差的意义解答即可.
【详解】
方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.
故答案为:乙.
本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.
10、1
【解析】
直接利用算术平均数的定义列式计算可得.
【详解】
解:这组数据的平均数为=1,
故答案为:1.
本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.
11、
【解析】
由在直角三角形中,30°角所对的边是斜边的一半得AC=2AB,再用运用勾股定理,易得BC的值.或直接用三角函数的定义计算.
【详解】
解:∵∠B=90°,∠C=30°,AB=2,
∴AC=2AB=4,
由勾股定理得:
故答案为:.
本题考查了解直角三角形,要熟练掌握好边角之间的关系、勾股定理及三角函数的定义.
12、1
【解析】
方程两边同时乘以1,可得x5=241=15.即可得出结论.
【详解】
∵ x5=81,
∴x5=81×1=241=15,
∴x=1,
故答案为:1.
本题考查了高次方程的解法,能够把241写成15是解题的关键.
13、R≥3.1
【解析】
解:设电流I与电阻R的函数关系式为I=,
∵图象经过的点(9,4),
∴k=31,
∴I=,
k=31>0,在每一个象限内,I随R的增大而减小,
∴当I取得最大值10时,R取得最小值=3.1,
∴R≥3.1,
故答案为R≥3.1.
三、解答题(本大题共5个小题,共48分)
14、(1)∠A=30°;(1).
【解析】
(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的中点时,AB=1BD=1BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证:D为AB的中点;
(1)在Rt△ADE中,根据∠A,ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC进行求解即可.
【详解】
解:(1)添加条件是∠A=30°.
证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,
∵C点折叠后与AB边上的一点D重合,
∴BE平分∠CBD,∠BDE=90°,
∴∠EBD=30°,
∴∠EBD=∠EAB,所以EB=EA;
∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,
∴D为AB中点.
(1)∵DE=1,ED⊥AB,∠A=30°,∴AE=1.
在Rt△ADE中,根据勾股定理,得AD==,
∴AB=1,∵∠A=30°,∠C=90°,
∴BC=AB=.
在Rt△ABC中,AC==3,
∴S△ABC=×AC×BC=.
15、(1)第一次每本的进货价是1元;(2):每本售价为1.2元.
【解析】
(1)设第一次每本的进货价是x元,根据提价之后用6000元购进数量比第一次少了1000本,列方程求解;
(2)设售价为y元,根据获利不低于4200元,列不等式求解
【详解】
解:(1)设第一次每本的进货价是x元, 由题意得:=1000, 解得:x=1.
答:第一次每本的进货价是1元;
(2)设售价为y元, 由题意得,(6000+2000)y﹣12000≥4200, 解得:y≥1.2.
答:每本售价为1.2元.
考点:分式方程的应用;一元一次不等式的应用
16、(1)(1,0),(0,-2);(2)C(2,2);m<0或m>2;(3) 或y=-3x-2.
【解析】
(1)利用函数解析式和坐标轴上点的坐标特征即可解决问题;
(2)①如图②,过点C 作CD⊥x 轴,垂足是D.构造全等三角形,利用全等三角形的性质求得点C的坐标;
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2;
(3)如图③中,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.利用全等三角形的性质求出点N坐标,当直线BN′⊥直线BN时,直线BN′也满足条件,求出直线BN′的解析式即可.
【详解】
解:(1)如图①,
令y=0,则2x-2=0,即x=1.所以A(1,0).
令x=0,则y=-2,即B(0,-2).
故答案是:(1,0);(0,-2);
(2)①如图②,
过点C 作CD⊥x 轴,垂足是D,
∵∠BOA=∠ADC=90°,
∠BAO=∠CAD,
CA=AB,
∴△BOA≌△CAD(AAS),
∴CD=OB=2,AD=OA=1,
∴C(2,2);
②由①可知D(2,0),观察图②,可知m的取值范围是:m<0或m>2.
故答案是:m<0或m>2;
(3)如图③,作AN⊥AB,使得AN=AB,作NH⊥x轴于H,则△ABN是等腰直角三角形,∠ABN=45°.
∵∠AOB=∠BAN=∠AHN=90°,
∴∠OAB+∠ABO=90°,∠OAB+∠HAN=90°,
∴∠ABO=∠HAN,
∵AB=AN,
∴△ABO≌△NAH(AAS),
∴AH=OB=2,NH=OA=1,
∴N(3,-1),
设直线BN的解析式为y=kx+b,
则有:,
解得,
∴直线BN的解析式为y=x-2,
当直线BN′⊥直线BN时,直线BN′也满足条件,直线BN′的解析式为:
.
∴满足条件的直线BN的解析式为y=x-2或y=-3x-2.
本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
17、(2)m=2;k=2;B(-2,-2);(2)①EF=8,②-2
(2)把A的坐标代入正比例函数即可得出m的值,把A的坐标代入反比例函数的解析式即可得到k的值,根据对称性即可得到B的坐标;
(2)①把t的值分别代入正比例函数和反比例函数,即可得出结论;
②根据图象即可得出结论.
【详解】
(2)解:∵直线y=2x与反比例函数y= (k≠0的常数)的图象交于A(2,m),∴m=2,k=2.根据对称性可得:B(-2,-2).
(2)解:①当t=时,y=2x=2,y==9,∴EF=9-2=8;
②由图象知:-2<t≤-或 ≤t<2.
本题考查了一次函数与反比例函数的综合.数形结合是解答本题的关键.
18、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.
【解析】
(1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;
(2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.
【详解】
解:(1)∵四边形ABCD为正方形,
∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
∴△ABD是等腰直角三角形,
∴AB=BD,
∵GE⊥CD,GF⊥BC,
∴△DGE和△BGF是等腰直角三角形,
∴GE=DG,GF=BG,
∴GE+GF=(DG+BG)=BD,
∴GE+GF=AB;
(2)①GE2+GF2=AG2,
证明:连接CG,如图所示:
在△ABG和△CBG中,,
∴△ABG≌△CBG(SAS),
∴AG=CG,
∵GE⊥CD,GF⊥BC,∠BCD=90°,
∴四边形EGFC是矩形,
∴CE=GF,
∵GE2+CE2=CG2,
∴GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,
∵GE2+GF2=AG2,
∴,
解得:x=1或x=5,
当x=1时,则BF=GF=5,
∴BG=,
当x=5时,则BF=GF=1,
∴BG=,
综上,的长为或.
本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、﹣8
【解析】
试题分析:∵关于x的方程无解,∴x=5
将分式方程去分母得:,
将x=5代入得:m=﹣8
【详解】
请在此输入详解!
20、1
【解析】
分9是腰长与底边长两种情况讨论求解即可.
【详解】
①当9是腰长时,三边分别为9、9、4时,能组成三角形,
周长=9+9+4=1,
②当9是底边时,三边分别为9、4、4,
∵4+4<9,
∴不能组成三角形,
综上所述,等腰三角形的周长为1.
故答案为:1.
本题考查了等腰三角形的两腰相等的性质,难点在于要分情况讨论求解.
21、4
【解析】
先在直角三角形ABC中,求出AB,BC,然后判断出BD=AB=4,简单计算即可
【详解】
在Rt△ABC中,AC=4,∠B=60°,
∴AB=4,BC=8,
由旋转得,AD=AB,
∵∠B=60°,
∴BD=AB=4,
∴CD=BC−BD=8−4=4
故答案为:4
此题考查含30度角的直角三角形,旋转的性质,解题关键在于求出AB,BC
22、
【解析】
首先利用勾股定理得出BO的长,再利用A点的位置得出答案.
【详解】
解:∵AB⊥OA
∴∠OAB=90°,
∵OA=3、AB=2,
则数轴上表示点C的数为
故答案为:
本题考查的是实数与数轴以及勾股定理,熟知实数与数轴上各点是一一对应关系与勾股定理是解答此题的关键.
23、2.
【解析】
根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.
【详解】
∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°
∴CD=DE
∵CD=DE,AD=AD
∴Rt△ACD≌Rt△ADE
∴AE=AC
∵在Rt△ABC中,AC==2
∴AE=2
∴BE=AB-AE=4
∵在Rt△DEB中,BD1=DE1+BE1.
∴DE1+12=(8-DE)1
∴DE=3 即BD=5,CD=3
∵BD=DF
∴DF=5
在Rt△DCF中,FC==4
∴△FCD的面积为=×FC×CD=2
故答案为2.
本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)75°(3)3人
【解析】
(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
(2)用4册的人数除以总人数乘以360°即可解答
(3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
【详解】
(1)抽查的学生总数为6÷25%=24(人),
读书为5册的学生数为24-5-6-4=9(人)
则条形统计图为:
(2) =75°
(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
25、(1)20%;(2)10368万元.
【解析】
试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.
试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640
解得:=0.2=-2.2(舍去)
所以该县投入教育经费的年平均增长率为20%
(2)因为2016年该县投入教育经费为8640万元,且增长率为20%
所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)
考点:一元二次方程的应用
26、(1)见解析;(2)①;②当 时,四边形PBQD是菱形.
【解析】
(1)先证明△POD≌△QOB,从而得OP=OQ,再由OB=OD,根据对角线互相平分的四边形是平行四边形即可证得结论;
(2)①根据PD=AD-AP即可得;
②由菱形的性质可得BP=PD=8-t,再由∠A=90°,根据勾股定理可得t2+62=(8-t)2,求出t值即可.
【详解】
(1)在矩形ABCD中,,
,
∵点O是BD的中点,
,
在△POD和△QOB中,
,
∴△POD≌△QOB,
∴OP=OQ,
又∵OB=OD,
四边形PBQD是平行四边形;
(2)①,
∴PD=8-AP=(8-t)cm;
②∵四边形PBQD是菱形,
∴BP=PD=8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
∴AP2+AB2=BP2,
即t2+62=(8-t)2,
解得:t=,
即当s时,四边形PBQD是菱形.
本题考查了矩形的性质,全等三角形的判定与性质,平行四边形的判定,菱形的性质,勾股定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
年龄(岁)
13
14
15
16
人数(人)
5
15
x
10-x
相关试卷
这是一份2024年广东省潮阳区华侨中学数学九上开学监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省潮阳区华侨中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是随机事件的是等内容,欢迎下载使用。
这是一份广东省潮阳区华侨中学2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了如果反比例函数的图像经过点等内容,欢迎下载使用。