|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】
    立即下载
    加入资料篮
    广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】01
    广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】02
    广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】

    展开
    这是一份广东省佛山市南海实验中学2024-2025学年九年级数学第一学期开学教学质量检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知三角形的周长是1.它的三条中位线围成的三角形的周长是( )
    A.1B.12C.8D.4
    2、(4分)如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有( )
    A.1个B.2个C.3个D.4个
    3、(4分)方程的解为( ).
    A.2B.1C.-2D.-1
    4、(4分)使代数式有意义的x的取值范围是( )
    A.B.C.且D.一切实数
    5、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
    A.1,2,3B.4,6,8C.6,8,10D.13,14,15
    6、(4分)如图,中,,,平分交于,若,则的面积为( )
    A.B.C.D.
    7、(4分)以下列各组数为边长,能构成直角三角形的是( )
    A.B.C.D.
    8、(4分)在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF,点F在BC边上;②把△ADH翻折,点D落在AE边上的点G处,折痕为AH,点H在CD边上,若AD=6,CD=10,则=( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.
    10、(4分)在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。
    11、(4分)已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
    12、(4分)若关于的一元二次方程有两个相等的实数根,则的值是__________.
    13、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
    (1)如图(1),连接AF、CE.
    ①四边形AFCE是什么特殊四边形?说明理由;
    ②求AF的长;
    (2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
    15、(8分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。
    (1)直接写出与之间的函数关系式;
    (2)分别求出第10天和第15天的销售金额。
    (3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
    16、(8分)如图,菱形ABCD的对角线AC、BD相交于点O,AB=10cm,OA=8cm.
    (1)求菱形ABCD的面积;
    (2)若把△OBC绕BC的中点E旋转180˚得到四边形OBFC,求证:四边形OBFC是矩形.
    17、(10分)如图,等边的边长是4,,分别为,的中点,延长至点,使,连接和.
    (1)求证:;
    (2)求的长;
    (3)求四边形的面积.
    18、(10分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.
    (1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;
    (2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).
    ①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;
    ②当t=5时,CE=CF,请直接写出a的值.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)化简二次根式的结果是______.
    20、(4分)在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.
    21、(4分)在平面直角坐标系中,若点P(2x+6,5x)在第四象限,则x的取值范围是_________;
    22、(4分)如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为 米.
    23、(4分)如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是_____度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
    (1)求证:四边形ABCD是矩形;
    (2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.
    25、(10分)在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。
    (1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。
    (2)当t为何值时,△DEF为直角三角形?请说明理由。
    26、(12分)如图1,四边形中,,,,,点从点出发,以每秒2个单位长度的速度向点运动,同时,点从点出发,以每秒1个单位长度的速度向点运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点作于点,连接交于点,连接,设运动时间为秒.
    (1)连接、,当为何值时,四边形为平行四边形;
    (2)求出点到的距离;
    (3)如图2,将沿翻折,得,是否存在某时刻,使四边形为菱形,若存在,求的值;若不存在,请说明理由
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.
    【详解】
    解:∵三角形的周长是1,
    ∴它的三条中位线围成的三角形的周长是:1×=2.
    故选:C.
    此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.
    2、C
    【解析】
    试题解析:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;
    ②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;
    ③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;
    ④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确.
    综上可得①②④正确,共3个.
    故选C.
    3、A
    【解析】
    试题解析:本题首先进行去分母,然后进行解关于x的一元一次方程,从而求出答案,最后必须要对这个解进行检验.在方程的两边同时乘以x(x+1)可得:2(x+1)=3x,解得:x=2,经检验:x=2是方程的解.
    4、C
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须.故选C.
    5、C
    【解析】
    判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    A、12+22=5≠32,故不能组成直角三角形,错误;
    B、42+62≠82,故不能组成直角三角形,错误;
    C、62+82=102,故能组成直角三角形,正确;
    D、132+142≠152,故不能组成直角三角形,错误.
    故选:C.
    考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    6、A
    【解析】
    由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.
    【详解】
    ∵中,,

    ∵平分


    ∴BD=CD=2
    ∵,,
    ∴AD=BD=1
    ∴AC=AD+CD=1+2=3
    根据勾股定理可得:AB=

    故选:A
    本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.
    7、C
    【解析】
    欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.
    【详解】
    解:A、∵12+()2≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;
    B、∵22+22≠32,∴此组数据不能作为直角三角形的三边长,故本选项错误;
    C、∵12+()2=()2,∴此组数据能作为直角三角形的三边长,故本选项正确;
    D、∵42+52≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误.
    故选:C.
    此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
    8、A
    【解析】
    利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6-x)2,可得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,可得y=3,由此即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,AB=CD=10,AD=BC=6,
    由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,
    ∴EG=4,
    在Rt△ADER中,DE= =8,
    ∴EC=10﹣8=2,
    设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,
    ∴x=,
    设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,
    ∴y=3,
    ∴EH=5,
    ∴,
    故选A.
    本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    ▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.
    【详解】
    解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.
    本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.
    10、75
    【解析】
    根据中位数的定义即可求解.
    【详解】
    先将数据从小到大排序为65,70,70,80,90,100,
    故中位数为(70+80)=75
    此题主要考查中位数的求解,解题的关键是熟知中位数的定义.
    11、2, 0≤x≤2或≤x≤2.
    【解析】
    (2)由图象直接可得答案;
    (2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
    【详解】
    (2)由 函数图象可知,乙比甲晚出发2小时.
    故答案为2.
    (2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
    一是甲出发,乙还未出发时:此时0≤x≤2;
    二是乙追上甲后,直至乙到达终点时:
    设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
    ∴k=5,
    ∴甲的函数解析式为:y=5x①
    设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
    解得 ,
    ∴乙的函数解析式为:y=20x﹣20 ②
    由①②得 ,
    ∴ ,
    故 ≤x≤2符合题意.
    故答案为0≤x≤2或≤x≤2.
    此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
    12、1
    【解析】
    因为关于的一元二次方程有两个相等的实数根,故 ,代入求解即可.
    【详解】
    根据题意可得: 解得:m=1
    故答案为:1
    本题考查的是一元二次方程的根的判别式,掌握根的判别式与方程的根的关系是关键.
    13、1
    【解析】
    由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.
    【详解】
    解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,
    ∴CD=DE.
    又∵AD=AD,
    ∴Rt△ACD≌Rt△AED,
    ∴AC=AE.
    又∵AC=BC,
    ∴BC=AE,
    ∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.
    故答案为:1.
    本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.
    三、解答题(本大题共5个小题,共48分)
    14、(1) ①菱形,理由见解析;②AF=1;(2) 秒.
    【解析】
    (1)①先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;
    ②根据勾股定理即可求AF的长;
    (2)分情况讨论可知,P点在BF上;Q点在ED上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.
    【详解】
    (1)①∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠CAD=∠ACB,∠AEF=∠CFE.
    ∵EF垂直平分AC,
    ∴OA=OC.
    在△AOE和△COF中,
    ∴△AOE≌△COF(AAS),
    ∴OE=OF(AAS).
    ∵EF⊥AC,
    ∴四边形AFCE为菱形.
    ②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,
    在Rt△ABF中,AB=4cm,由勾股定理,得
    16+(8﹣x)2=x2,
    解得:x=1,
    ∴AF=1.
    (2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;
    同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.
    ∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,
    ∴以A,C,P,Q四点为顶点的四边形是平行四边形时,
    ∴PC=QA,
    ∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,
    ∴PC=1t,QA=12﹣4t,
    ∴1t=12﹣4t,
    解得:t=.
    ∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.
    本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.
    15、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    【解析】
    (1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
    (2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;
    (3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
    【详解】
    解:(1) 分两种情况:
    ①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
    ∵直线y=k1x过点(15,30),
    ∴15k1=30,解得k1=2,
    ∴y=2x(0≤x≤15);
    ②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
    ∵点(15,30),(20,0)在y=k2x+b的图象上,
    ∴ ,解得: ,
    ∴y=-6x+120(15<x≤20);
    综上,可知y与x之间的函数关系式为:
    (2) )∵第10天和第15天在第10天和第20天之间,
    ∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
    ∵点(10,10),(20,8)在p=mx+n的图象上,
    ∴ ,解得: ,
    ∴(10≤x≤20),
    当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);
    (3) 若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,
    ∴“最佳销售期”共有16-12+1=5(天).
    ∵,,
    ∴随的增大而减小,∴当时,
    取12时有最大值,此时,即销售单价最高为9.6元 .
    故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
    本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.
    16、(1)96cm2;(2)证明见解析.
    【解析】
    (1)利用勾股定理,求出OB,继而求出菱形的面积,即可.
    (2)求出四边形OBFC的各个角的大小,利用矩形的判定定理,即可证明.
    【详解】
    解:(1)∵四边形ABCD是菱形
    ∴AC⊥BD .
    在直角三角形AOB中,AB=10cm,OA=8cm
    OB===6cm.
    ∴AC=2OA=2×8=16cm ;BD=2OB=2×6=12cm
    ∴菱形ABCD的面积=×AC×BD=×16×12=96cm2 .
    (2)∵四边形ABCD是菱形
    ∴AC⊥BD
    ∴∠BOC=
    ∴在Rt△BOC中,∠OBC+∠OCB= .
    又∵把△OBC绕BC的中点E旋转得到四边形OBFC
    ∴∠F=∠BOC=,∠OBC=∠BCF
    ∴∠BCF+∠OCB=,即∠OCF=.
    ∴四边形OBFC是矩形(有三个角是直角的四边形是矩形).
    本题主要考查了菱形及矩形的性质,正确掌握菱形及矩形的性质是解题的关键.
    17、 (1)证明见解析;(2)EF=;(3).
    【解析】
    (1)利用三角形中位线定理即可解决问题;
    (2)先求出,再证明四边形是平行四边形即可;
    (3)过点作于,求出、即可解决问题.
    【详解】
    (1)在中,
    、分别为、的中点,
    为的中位线,



    (2),,

    ,,

    ,,
    四边形是平行四边形,

    (3)过点作于,
    ,,



    本题考查等边三角形的性质、三角形中位线定理、勾股定理、平行四边形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,记住平行四边形的面积公式,学会添加常用辅助线,属于中考常考题型.
    18、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或
    【解析】
    (1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;
    (2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接下来,证明△OEC≌△DFC,从而可求得DF的长度,于是得到BF=2,然后再由两点间的距离公式求得OB的长,从而可求得a的值;
    ②先求得点E的坐标,然后求得EC的长,从而得到CF1的长,然后依据勾股定理的逆定理证明∠OBA=90°,在△BCF1中,依据勾股定理可求得BF1的长,从而可求得a的值,设点F2的坐标(b,6),由CE=CF列出关于b的方程可求得点F2的坐标,从而可求得a的值,在Rt△CAF3中,取得AF3的长,从而求得点F运动的路程,于是可求得a的值.
    【详解】
    解:(1)如图所示:
    四边形OBDA是平行四边形.
    理由如下:∵点C为线段AB的中点,
    ∴CB=CA.
    ∵点D与原点O关于点C对称,
    ∴CO=CD.
    ∴四边形OBDA是平行四边形.
    (2)①如图2所示;
    ∵直线EF恰好平分四边形OBDA的面积,
    ∴直线EF必过C(9,3).
    ∵t=1,
    ∴OE=1.
    ∵BD∥OA,
    ∴∠COE=∠CDF.
    ∵在△OEC和△DFC中,
    ∴△OEC≌△DFC.
    ∴DF=OE=1.
    ∴BF=4-1=2.
    由两点间的距离公式可知OB==6.
    ∴1a=6+2.
    ∴a=2+.
    ②如图3所示:
    ∵当t=3时,OE=3,
    ∴点E的坐标(3,0).
    由两点间的距离公式可知EC==3.
    ∵CE=CF,
    ∴CF=3.
    由两点间的距离公式可知OB=BA=6,
    又∵OA=4.
    ∴△OBA为直角三角形.
    ∴∠OBA=90°.
    ①在直角△F1BC中,CF1=3,BC=3,
    ∴BF1=.
    ∴OF1=6-.
    ∴a=.
    ②设F2的坐标为(b,6).由两点间的距离公式可知=3.
    解得;b=3(舍去)或b=5.
    ∴BF2=5-6=6.
    ∴OB+BF2=6+6.
    ∴a=.
    ③∵BO∥AD,
    ∴∠BAD=∠OBA=90°.
    ∴AF3==.
    ∴DF3=6-.
    ∴OB+BD+DF3=6+4+6-=4-+4.
    ∴a=.
    综上所述a的值为或或.
    本题主要考查的是四边形的综合应用,解答本题主要应用了平行四边形的判定、全等三角形的性质和判定、勾股定理和勾股定理的逆定理的应用,两点间的距离公式求得F1B,F2D,F3A的长度是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    利用二次根式的性质化简.
    【详解】
    =.
    故选为:.
    考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.
    20、
    【解析】
    由在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同,直接利用概率公式求解即可求得答案.
    【详解】
    ∵在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.
    ∴从中随机摸出一个球,摸到红球的概率是:
    故答案为:
    此题考查概率公式,掌握运算法则是解题关键
    21、﹣3<x<1
    【解析】
    根据第四象限内横坐标为正,纵坐标为负可得出答案.
    【详解】
    ∵点P(2x-6,x-5)在第四象限,

    解得-3<x<1.故答案为-3<x<1.
    本题考查了点的坐标、一元一次不等式组,解题的关键是知道平面直角坐标系中第四象限横、纵坐标的符号.
    22、1
    【解析】
    试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.
    解:由题意可得:AB=200m,∠A=30°,
    则BC=AB=1(m).
    故答案为:1.
    23、65°.
    【解析】
    利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.
    【详解】
    在平行四边形ABCD中,∠A=130°,
    ∴∠BCD=∠A=130°,∠D=180°-130°=50°,
    ∵DE=DC,
    ∴∠ECD=(180°-50°)=65°,
    ∴∠ECB=130°-65°=65°.
    故答案为65°.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)证明见解析;(2)∠ADO==36°.
    【解析】
    (1)先判断四边形ABCD是平行四边形,继而根据已知条件推导出AC=BD,然后根据对角线相等的平行四边形是矩形即可;
    (2)设∠AOB=4x,∠ODC=3x,则∠OCD=∠ODC=3x.,在△ODC中,利用三角形内角和定理求出x的值,继而求得∠ODC的度数,由此即可求得答案.
    【详解】
    (1)∵AO=OC,BO=OD,
    ∴四边形ABCD是平行四边形,
    又∵∠AOB=2∠OAD,∠AOB是△AOD的外角,
    ∴∠AOB=∠OAD+∠ADO.
    ∴∠OAD=∠ADO.
    ∴AO=OD.
    又∵AC=AO+OC=2AO,BD=BO+OD=2OD,
    ∴AC=BD.
    ∴四边形ABCD是矩形.
    (2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,
    在△ODC中,∠DOC+∠OCD+∠CDO=180°
    ∴4x+3x+3x=180°,解得x=18°,
    ∴∠ODC=3×18°=54°,
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∴∠ADO=∠ADC-∠ODC=90°-54°=36°.
    本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.
    25、(1)能,10;(2) 或12,理由见解析.
    【解析】
    (1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.
    (2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.
    【详解】
    解:(1)能,
    ∵在Rt△ABC中,∠C=90°﹣∠A=30°,
    ∴AB=AC=×60=30cm。
    ∵CD=4t,AE=2t,
    又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。
    ∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。
    当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。
    ∴当t=10时,AEFD是菱形。
    (2)若△DEF为直角三角形,有两种情况:
    ①如图1,∠EDF=90°,DE∥BC,
    则AD=2AE,即60﹣4t=2×2t,解得:t= 。
    ②如图2,∠DEF=90°,DE⊥AC,
    则AE=2AD,即
    2t =2×60-8t,解得:t=12。
    综上所述,当t= 或12时,△DEF为直角三角形
    本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.
    26、 (1)当时,四边形为平行四边形;(2)点到的距离;(3)存在,,使四边形为菱形.
    【解析】
    (1)先判断出四边形CNPD为矩形,然后根据四边形为平行四边形得,即可求出t值;
    (2)设点到的距离,利用勾股定理先求出AC,然后根据面积不变求出点到的距离;
    (3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.
    【详解】
    解:(1)根据题意可得,
    ∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,
    ∴四边形CNPD为矩形,


    ∵四边形为平行四边形,


    解得:,
    ∴当时,四边形为平行四边形;
    (2)设点到的距离,
    在中,

    在中,

    ∴点到的距离
    (3)存在. 理由如下:
    ∵将沿翻折得
    ∵,
    ∴当时有四边形为菱形,
    ∴,
    解得,
    ∴,使四边形为菱形.
    本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.
    题号





    总分
    得分
    相关试卷

    广东省佛山市南海区桂城街道2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份广东省佛山市南海区桂城街道2024-2025学年九年级数学第一学期开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】: 这是一份2025届广东省佛山市南海区石门实验学校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省佛山市南海区南海实验中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2025届广东省佛山市南海区南海实验中学数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map