终身会员
搜索
    上传资料 赚现金

    广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】

    立即下载
    加入资料篮
    广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】第1页
    广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】第2页
    广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】

    展开

    这是一份广东省广州市从化区2024年数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
    A.2B.3C.D.
    2、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【 】
    A.cm B.cm C.cm D.cm
    3、(4分)如图,当y1>y2时,x的取值范围是 ( )
    A.x>1B.x>2C.x<1D.x<2
    4、(4分)一元二次方程的根的情况是( )
    A.有两个不相等的实数根B.有两个相等的实数根
    C.只有一个实数根D.没有实数根
    5、(4分)下列说法正确的是( )
    A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃
    B.一组数据2,2,3,4,5,5,5,这组数据的众数是2
    C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分
    D.一组数据2,2,3,4,这组数据的中位数是2.5
    6、(4分)如图,在平面直角坐示系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的横坐标分別为1,2,反比例函数的图像经过A,B两点,则菱形ABCD的边长为( )
    A.1B.C.2D.
    7、(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A、B,把正方形沿箭头方向推,使点D落在y轴的正半轴上的点处,则点C的对应点的坐标为( )
    A.B.C.D.
    8、(4分)如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是( )
    A.△AOB的面积等于△AOD的面积B.当AC⊥BD时,它是菱形
    C.当OA=OB时,它是矩形D.△AOB的周长等于△AOD的周长
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
    10、(4分)如图,在正方形ABCD中,E是边CD上的点.若△ABE的面积为4.5,DE=1,则BE的长为________.
    11、(4分)当时,分式的值是________.
    12、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.
    13、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)用公式法解下列方程:
    (1)2x2−4x−1=0;
    (2)5x+2=3x2.
    15、(8分)学校组织初二年级学生去参加社会实践活动,学生分别乘坐甲车、乙车,从学校同时出发,沿同一路线前往目的地.在行驶过程中,甲车先匀速行驶1小时后,提高速度继续匀速行驶,当甲车超过乙车40千米后停下来等候乙车,两车相遇后,甲车和乙车一起按乙车原来的速度匀速行驶到达目的地.如图是甲、乙两车行驶的全过程中经过的路程y(千米)与出发的时间x(小时)之间函数关系图象.根据图中提供的信息,解答下列问题:
    (1)甲车行驶的路程为______千米;
    (2)乙车行驶的速度为______千米/时,甲车等候乙车的时间为______小时;
    (3)甲、乙两车出发________小时,第一次相遇;
    (4)甲、乙两车出发________小时,相距20千米.
    16、(8分)今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:

    (1)这次共抽取了_________名学生进行调查统计;
    (2)将条形统计图补充完整,扇形统计图中D类所对应的扇形圆心角大小为_________;
    (3)如果该校共有3000名学生,请你估计该校B类学生约有多少人?
    17、(10分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
    (1)请写出旋转中心的坐标是 ,旋转角是 度;
    (2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;
    (3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.
    18、(10分)将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG,
    (1)试判断四边形DHBG为何种特殊的四边形,并说明理由;
    (2)若AB=8,AD=4,求四边形DHBG的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去…若点, ,则点的坐标为________.
    20、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_____.
    21、(4分)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.
    22、(4分)如图甲,在所给方格纸中,每个小正方形的边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在格点处)请将图乙中的▱ABCD分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.
    23、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.
    (1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;
    (2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?
    (3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)
    25、(10分)如图,在直角坐标系中,直线与轴分别交于点、点,直线交于点,是直线上一动点,且在点的上方,设点.
    (1)当四边形的面积为38时,求点的坐标,此时在轴上有一点,在轴上找一点,使得最大,求出的最大值以及此时点坐标;
    (2)在第(1)问条件下,直线左右平移,平移的距离为. 平移后直线上点,点的对应点分别为点、点,当为等腰三角形时,直接写出的值.
    26、(12分)如图,在直角三角形ABC中,∠C=90°,∠B=60°,AB=8cm,E、F分别为边AC、AB的中点.
    (1)求∠A的度数;
    (2)求EF和AE的长.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    分析:连接EF交AC于点M,由菱形的性质可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理和解直角三角形的性质求解即可.
    详解:如图,连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用“AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=10,且tan∠BAC=;在Rt△AME中,AM= AC=5 ,tan∠BAC=,可得EM= ;在Rt△AME中,由勾股定理求得AE= =1.2.
    故选:B.
    点睛:此题主要考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定与性质及锐角三角函数的知识,综合运用这些知识是解题关键.
    2、B。
    【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,
    在Rt△AOB中,,
    ∵BD×AC=AB×DH,∴DH=cm。
    在Rt△DHB中,,AH=AB﹣BH=cm。
    ∵,∴GH=AH=cm。故选B。
    考点:菱形的性质,勾股定理,锐角三角函数定义。
    3、C
    【解析】
    分析:根据图像即可解答.
    详解:观察图像可知:当x<1时,y1=kx+b在y2=mx+n的上方,即y1>y2..
    故选C.
    点睛:本题考查一次函数的图像问题,主要是通过观察当x在哪个范围内时对应的函数值较大.
    4、D
    【解析】
    直接计算根的判别式,然后根据判别式的意义判断根的情况
    【详解】
    解:
    所以方程无实数根
    故选:D
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    5、D
    【解析】
    直接利用中位数的定义,众数的定义和平均数的求法、极差的定义分别分析得出答案
    【详解】
    A、某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是6℃,故错误
    B、一组数据2,2,3,4,5,5,5,这组数据的众数是5,故错误;
    C、小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是120.6分,故此选项错误
    D、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项正确;
    故选D
    此题考查中位数的定义,众数的定义和平均数的求法、极差的定义,掌握运算法则是解题关键
    6、B
    【解析】
    过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为1,2,可得出纵坐标,即可求得AE,BE,再根据勾股定理得出答案.
    【详解】
    解:过点A作x轴的垂线,与CB的延长线交于点E,
    ∵A,B两点在反比例函数的图象上且横坐标分别为1,2,
    ∴A,B纵坐标分别为2,1,
    ∴AE=1,BE=1,
    ∴AB= = .
    故选B.
    本题考查菱形的性质以及反比例函数图象上点的坐标特征,熟练掌握菱形的性质以及反比例函数图象上点的坐标特征是解题的关键.
    7、A
    【解析】
    由已知条件得到AD′=AD=2,AO=1,AB=2,根据勾股定理得到,于是得到结论.
    【详解】
    解:∵AD′=AD=2,

    ∴,
    ∵C′D′=2,C′D′∥AB,
    ∴C′(2, ),
    故选A.
    本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
    8、D
    【解析】
    A.∵四边形ABCD是平行四边形,∴BO=OD,∴S△AOB=S△AOD(等底同高),则A正确,不符合题意;
    B.当AC⊥BD时,平行四边形ABCD是菱形,正确,不符合题意;
    C.当OA=OB时,则AC=BD,∴平行四边形ABCD是矩形,正确,不符合题意;
    D.△AOB的周长=AO+OB+AB,△AOD的周长=AO+OD+AD=AO+OB+AD,∵AB≠AD,∴周长不相等,故错误,符合题意.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、0.1
    【解析】
    概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
    【详解】
    解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
    ∴这种苹果幼树移植成活率的概率约为0.1,
    故答案为:0.1.
    此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    10、
    【解析】
    由S正方形ABCD=2S△ABE=9,先求出正方形的边长,再在Rt△BCE中,利用勾股定理即可解决问题.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD=BC,∠C=90°,
    ∵S正方形ABCD=2S△ABE=9,
    ∴AB=CD=BC=3,
    ∵DE=1,
    ∴EC=2,
    在Rt△BCE中,∵∠C=90°,BC=3,EC=2,
    ∴BE=
    故答案为:.
    本题考查正方形的性质、勾股定理等知识,解题的关键是S正方形ABCD=2S△ABE的应用,记住这个结论,属于中考常考题型.
    11、2021
    【解析】
    先根据平方差公式对分式进行化简,再将 代入即可得到答案.
    【详解】
    ==(a+2),将代入得原式=2019+2=2021.
    本题考察平方差公式和分式的化简,解题的关键是掌握平方差公式和分式的化简.
    12、60°或300°
    【解析】
    由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.
    【详解】
    解:如图,连接,
    ∵四边形ABCD是矩形,
    ∴CD=AB,∠DAB=∠ADC=90°,
    ∵DG=AG,
    ∴∠ADG=∠DAG,
    ∴∠CDG=∠GAB,且CD=AB,DG=AG,
    ∴△DCG≌△ABG(SAS),
    ∴CG=BG,
    ∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,
    ∴BC=BG,∠CBG=α,
    ∴BC=BG=CG,
    ∴△BCG是等边三角形,
    ∴∠CBG=α=60°,
    同理当G点在AD的左侧时,
    △BCG仍是等边三角形,
    Α=300°
    故答案为60°或300°.
    本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.
    13、2
    【解析】
    连接AC,
    ∵四边形ABCD为菱形,
    ∴AB=BC=4,A、C关于BD对称,
    ∴连AM交BD于P,
    则PM+PC=PM+AP=AM,
    根据两点之间线段最短,AM的长即为PM+PC的最小值.
    ∵∠ABC=60°,AB=BC,
    ∴△ABC为等边三角形,
    又∵BM=CM,
    ∴AM⊥BC,
    ∴AM=,
    故答案为:2.
    本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) x1=,x2=;(2) x1=2,x2=−.
    【解析】
    把原方程化为一元二次方程的一般形式,根据求根公式x=求解即可.
    【详解】
    (1)∵△=16+8=24>0,
    ∴x==,
    x1=,x2=;
    (2)先整理得到3x2−5x−2=0,∵△=25+24=49>0,∴x=,x1=2,x2=−.
    本题考查解一元二次方程-公式法,解题的关键是掌握解一元二次方程-公式法.
    15、560 80 0.5 2 1, 3,4.25.
    【解析】
    (1)根据函数图象中的数据可以写出甲行驶的路程;
    (2)根据函数图象中的数据可以求得乙车行驶的速度和甲等候乙车的时间;
    (3)根据函数图象中的数据可以计算出甲、乙两车第一次相遇的时间;
    (4)根据题意可以计算出两车相距20千米时行驶的时间.
    【详解】
    (1)由图象可得,
    甲行驶的路程为560千米,
    故答案为: 560;
    (2) 乙车行驶的速度为:5607=80千米/时, 甲车等候乙车的时间为:4080=0.5小时,
    故答案为:80,0.5;
    (3) a=32080=4, c=320+40=360,
    当时,甲车的速度是: (360-60) (4-1) =100千米/时,
    设甲、乙两车c小时时,两车第一次相遇,80c=60+100 (c-1),
    解得,c=2,
    故答案为:2;
    (4) 当甲、乙两车行驶t小时时,相距20千米,
    当时,80t-60t=20,得t=1,
    当时,,解得t=1(舍去),t=3,
    当时,360-80t=20,解得t=4.25,
    综上,当甲、乙两车行驶1小时、3小时或4.25小时,两车相距20千米,
    故答案为:1,3,4.25.
    此题考查一次函数的应用,正确理解函数图象的意义,根据图象提供的信息正确计算是解题的关键.
    16、(1)50;(2)图见解析,;(3)该校B类学生约有1320人.
    【解析】
    (1)根据A类的条形统计图和扇形统计图信息即可得;
    (2)先根据题(1)的结论求出D类学生的人数,由此即可得补充条形统计图,再求出D类学生的人数占比,然后乘以可得圆心角的大小;
    (3)先求出B类学生的人数占比,再乘以3000即可得.
    【详解】
    (1)这次调查共抽取的学生人数为(名)
    故答案为:50;
    (2)D类学生的人数为(名)
    则D类学生的人数占比为
    D类所对应的扇形圆心角大小为
    条形统计图补全如下:
    (3)B类学生的人数占比为
    则(人)
    答:该校B类学生约有1320人.
    本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
    17、(1)O(0,0);90;(1)图形详见解析;(3)证明详见解析.
    【解析】
    试题分析:(1)由图形可知,对应点的连线CC1、AA1的垂直平分线过点O,根据旋转变换的性质,点O即为旋转中心,再根据网格结构,观察可得旋转角为90°;
    (1)利用网格结构,分别找出旋转后对应点的位置,然后顺次连接即可;
    (3)利用面积,根据正方形CC1C1C3的面积等于正方形AA1A1B的面积加上△ABC的面积的4倍,列式计算即可得证.
    试题解析:解:(1)旋转中心坐标是O(0,0),旋转角是90度;
    (1)画出的图形如图所示;
    (3)有旋转的过程可知,四边形CC1C1C3和四边形AA1A1B是正方形.
    ∵S正方形CC1C1C3=S正方形AA1A1B+4S△ABC,
    ∴(a+b)1=c1+4×ab,
    即a1+1ab+b1=c1+1ab,
    ∴a1+b1=c1.
    考点:作图-旋转变换;勾股定理的证明.
    18、(1)四边形DHBG是菱形,理由见解析;(2)1.
    【解析】
    (1)由四边形ABCD、FBED是完全相同的矩形,可得出△DAB≌△DEB(SAS),进而可得出∠ABD=∠EBD,根据矩形的性质可得AB∥CD、DF∥BE,即四边形DHBG是平行四边形,再根据平行线的性质结合∠ABD=∠EBD,即可得出∠HDB=∠HBD,由等角对等边可得出DH=BH,由此即可证出▱DHBG是菱形;
    (2)设DH=BH=x,则AH=8-x,在Rt△ADH中,利用勾股定理即可得出关于x的一元一次方程,解之即可得出x的值,再根据菱形的面积公式即可求出菱形DHBG的面积.
    【详解】
    解:四边形是菱形.理由如下:
    ∵四边形、是完全相同的矩形,
    ∴,,.
    在和中,,
    ∴,
    ∴.
    ∵,,
    ∴四边形是平行四边形,,
    ∴,
    ∴,
    ∴是菱形.
    由,设,则,
    在中,,即,
    解得:,即,
    ∴菱形的面积为.
    本题考查了菱形的判定与性质、矩形的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)利用等角对等边找出DH=BH;(2)利用勾股定理求出菱形的边长.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(1,2)
    【解析】
    先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…,即可得每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.
    【详解】
    ∵AO= ,BO=2,
    ∴AB= ,
    ∴OA+AB1+B1C2=6,
    ∴B2的横坐标为:6,且B2C2=2,
    ∴B4的横坐标为:2×6=12,
    ∴点B2018的横坐标为:2018÷2×6=1.
    ∴点B2018的纵坐标为:2.
    ∴点B2018的坐标为:(1,2),
    故答案是:(1,2).
    考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.
    20、
    【解析】
    试题分析:根据菱形的对角线互相垂直平分求出OA=4、OB=3,再利用勾股定理列式求出AB=5,然后根据△AOB的面积列式得,解得OH=.
    故答案为.
    点睛:此题主要考查了菱形的性质,解题时根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式求出AB,然后根据△AOB的面积列式计算即可得解.
    21、
    【解析】
    由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.
    【详解】
    ∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,
    ∴小军能一次打开该旅行箱的概率是:.
    故答案是:.
    解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).
    22、详见解析
    【解析】
    直接利用网格结合全等三角形的判定方法得出答案.
    【详解】
    解:如图所示:③与④全等;②与⑥全等;⑤与①全等.
    此题主要考查了平行四边形的性质以及全等三角形的判定,正确应用网格是解题关键.
    23、k>2
    【解析】
    试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
    【详解】
    根据题意可得:k-2>0,解得:k>2.
    考点:一次函数的性质;一次函数的定义
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3).
    【解析】
    (1)由白球3只、红球2只、黑球1只根据概率公式求解即可;
    (2)若取出的第1只球是红球,则剩余的5个球中有1个红球,根据概率公式求解即可;
    (3)先列举出所有等可能的情况数,再根据概率公式求解即可.
    【详解】
    解:(1)由题意得取出的球是黑球的概率为;
    (2)若取出的第1只球是红球,则剩余的5个球中有1个红球
    所以这时取出的球还是红球的概率是;
    (3)根据题意列表如下:
    共有36种组合,其中两次取出的球都是白球的有9中组合,则取出的球都是白球概率是.
    本题考查用列表法或树状图法求概率.解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
    25、(1)点D的坐标为(﹣2,10), 点M的坐标为(0,)时,|ME﹣MD|取最大值2;(2) 当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1
    【解析】
    (1)将x=-2代入直线AB解析式中即可求出点C的坐标,利用分割图形求面积法结合四边形AOBD的面积为38即可得出关于m的一元一次方程,解之即可得出m值,在x轴负半轴上找出点E关于y轴对称的点E′(-8,0),连接E′D并延长交y轴于点M,连接DM,根据三角形三边关系即可得出此时|ME-MD|最大,最大值为线段DE′的长度,由点D、E′的坐标利用待定系数法即可求出直线DE′的解析式,将x=0代入其中即可得出此时点M的坐标,再根据两点间的距离公式求出线段DE′的长度即可;
    (2)根据平移的性质找出平移后点A′、B′的坐标,结合点D的坐标利用两点间的距离公式即可找出B′D、A′B′、A′D的长度,再根据等腰三角形的性质即可得出关于t的方程,解之即可得出t值,此题得解.
    【详解】
    (1)当x=﹣2时,y=,
    ∴C(﹣2,),
    ∴S四边形AOBD=S△ABD+S△AOB=CD•(xA﹣xB)+OA•OB=3m+8=38,
    解得:m=10,
    ∴当四边形AOBD的面积为38时,点D的坐标为(﹣2,10).
    在x轴负半轴上找出点E关于y轴对称的点E′(﹣8,0),连接E′D并延长交y轴于点M,连接DM,此时|ME﹣MD|最大,最大值为线段DE′的长度,如图1所示.
    DE′=.
    设直线DE′的解析式为y=kx+b(k≠0),
    将D(﹣2,10)、E′(﹣8,0)代入y=kx+b,
    ,解得:,
    ∴直线DE′的解析式为y=x+,
    ∴点M的坐标为(0,).
    故当点M的坐标为(0,)时,|ME﹣MD|取最大值2.
    (2)∵A(0,8),B(﹣6,0),
    ∴点A′的坐标为(t,8),点B′的坐标为(t﹣6,0),
    ∵点D(﹣2,10),
    ∴B′D=,
    A′B′==10,A′D=.
    △A′B′D为等腰三角形分三种情况:
    ①当B′D=A′D时,有=,
    解得:t=1;
    ②当B′D=A′B′时,有=10,
    解得:t=4;
    ③当A′B′=A′D时,有10=,
    解得:t1=﹣2﹣4(舍去),t2=﹣2+4.
    综上所述:当△A′B′D为等腰三角形时,t的值为﹣2﹣4、4、﹣2+4或1.
    考查了一次函数的综合应用、待定系数法求一次函数解析式、三角形的面积、一次函数图象上点的坐标特征、等腰三角形的性质以及两点间的距离公式,解题的关键是:(1)找出|ME-MD|取最大值时,点M的位置;(2)根据等腰三角形的性质找出关于t的方程.
    26、(1)30°(2)EF=2cm,AE=2cm
    【解析】
    (1)由“直角三角形的两个锐角互余”的性质来求∠A的度数;
    (2)由“30度角所对的直角边等于斜边的一半”求得BC= AB=4cm,再利用中位线的性质即可解答
    【详解】
    (1)∵在Rt△ABC中,∠C=90°,∠B=60°
    ∴∠A=90°-∠B=30°
    即∠A的度数是30°.
    (2)∵在Rt△ABC中,∠C=90°,∠A=30°,AB=8cm
    ∴BC=AB=4cm
    ∴AC= =cm
    ∴AE=AC=2cm
    ∵E、F分别为边AC、AB的中点
    ∴EF是△ABC的中位线
    ∴EF=BC=2cm.
    此题考查三角形中位线定理,含30度角的直角三角形,解题关键在于利用勾股定理进行计算
    题号





    总分
    得分

    相关试卷

    广东省广州市从化区5月2025届数学九上开学调研试题【含答案】:

    这是一份广东省广州市从化区5月2025届数学九上开学调研试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年广州市从化区从化七中学数学九上开学调研试题【含答案】:

    这是一份2024年广州市从化区从化七中学数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广东省广州市从化区九年级数学第一学期期末达标检测试题含答案:

    这是一份2023-2024学年广东省广州市从化区九年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了下列图形中为中心对称图形的是,若x1是方程,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map