广东省广州市番禺区广博学校2025届数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中是一次函数的是
A.B.
C.D.
2、(4分)下列各多项式能进行因式分解的是( )
A.B.C.D.
3、(4分)若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是( )
A.B.C.D.
4、(4分)一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0B.x>﹣3C.x>﹣6D.x>﹣9
5、(4分)已知,则化简的结果是( )
A.B.C.﹣3D.3
6、(4分)下面式子从左边到右边的变形是因式分解的是( )
A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2
C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣)
7、(4分)小明发现下列几组数据能作为三角形的边:①3,4,5; ②5,12,13;③12,15,20;④8,24,25;其中能作为直角三角形的三边长的有( )组
A.1B.2C.3D.4
8、(4分)如图,四边形ABCD为菱形,AB=5,BD=8,AE⊥CD于E,则AE的长为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.
10、(4分)如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,AE=4,BC=8,有下列结论:
①DE=4;
②S△AED=S四边形ABCD;
③DE平分∠ADC;
④∠AED=∠ADC.
其中正确结论的序号是_____(把所有正确结论的序号都填在横线上)
11、(4分)如图,直线 y=x+1 与 y 轴交于点 A1,以 OA1为边,在 y 轴右侧作正方形 OA1B1C1,延长 C1B1交直线 y=x+1 于点 A2,再以 C1A2为边作正方形,…,这些正方形与直线 y=x+1 的交点分别为 A1,A2,A3,…,An,则点 Bn 的坐标为_______.
12、(4分)分解因式:x2-9=_ ▲ .
13、(4分)点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解下列方程
(1);(2)
15、(8分)为了了解学校开展“孝敬父母,从家务劳动做起”活动的实施情况,该校抽取八年级50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时)得到一组数据,绘制成下表:
(1)请填表中未完成的部分;
(2)根据以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比是多少?
(3)针对以上情况,写出一个20字以内的倡导“孝敬父母,热爱劳动”的句子.
16、(8分)把下列各式分解因式:
(1)1a(x﹣y)﹣6b(y﹣x);
(1)(a1+4)1﹣16a1.
17、(10分)计算:(1) ; (2) .
18、(10分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,
(1)如图1,求证:△AMC≌△AND;
(2)如图1,若DF=,求AE的长;
(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.
20、(4分)正n边形的一个外角的度数为60°,则n的值为 .
21、(4分)在平面直角坐标系中,点P(–2,–3)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
22、(4分)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是________.
23、(4分)如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.
(1)求∠BAC的度数。
(2)若AC=2,求AD的长。
25、(10分)如图,△ABC 的面积为 63,D 是 BC 上的一点,且 BD:BC=2:3, DE∥AC 交 AB 于点 E,延长 DE 到 F,使 FE:ED=2:1.连结 CF 交 AB 点于 G.
(1)求△BDE 的面积;
(2)求 的值;
(3)求△ACG 的面积.
26、(12分)若点,与点关于轴对称,则__.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据形如k、b是常数的函数是一次函数即可解答.
【详解】
选项A是反比例函数;选项B是二次函数;选项C是二次函数;选项D是一次函数.
故选D.
本题主要考查了一次函数定义,关键是掌握一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.
2、C
【解析】
利用平方差公式及完全平方公式的结构特征进行判断即可.
【详解】
A. 不能进行因式分解;
B. 不能进行因式分解;
C. 可以分解为(x+1)(x-1),故正确;
D. 不能进行因式分解.
本题考查因式分解,解题的关键是掌握因式分解的方法.
3、A
【解析】
首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.
【详解】
根据题意可知,k<0,b>0,
∴y=bx+k的图象经过一,三,四象限.
故选A.
此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:
①k>0,b>0⇔y=kx+b的图象在一、二、三象限;
②k>0,b<0⇔y=kx+b的图象在一、三、四象限;
③k<0,b>0⇔y=kx+b的图象在一、二、四象限;
④k<0,b<0⇔y=kx+b的图象在二、三、四象限.
4、D
【解析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣1,
所以当x>﹣1时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣1.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5、D
【解析】
先把变形为+,根据a的取值范围可确定1-a和a-4的符号,然后根据二次根式的性质即可得答案.
【详解】
=+
∵2∴1-a<0,a-4<0,
∴+=-(1-a)-(a-4)=-1+a-a+4=3,
故选D.
本题考查了二次根式的化简,当a≥0时,=a;当a<0时,=-a;熟练掌握二次根式的性质是解题关键.
6、B
【解析】
根据因式分解的定义即可判断.
【详解】
A. 含有加减,不是因式分解;
B. 是因式分解;
C. 是整式的运算,不是因式分解;
D. 含有分式,不是因式分解.
故选B
此题主要考查因式分解的定义:把一个多项式化为几个整式的乘积形式.
7、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】
①∵
∴此三角形是直角三角形,符合题意;
②∵
∴此三角形是直角三角形,符合题意;
③∵
∴此三角形不是直角三角形,不符合题意;
④∵
∴此三角形不是直角三角形,不符合题意;
故其中能作为直角三角形的三边长的有2组
故选:B
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
8、C
【解析】
分析:利用勾股定理求出对角线AC的长,再根据S菱形ABCD=•BD•AC=CD•AE,求出AE即可.
详解:∵四边形ABCD是菱形,
∴AB=CD=5,AC⊥BD,OB=OB=4,OA=OC,
在Rt△AOB中,∵AB=5,OB=4,
∴OA===3,
∴AC=6,
∴S菱形ABCD=⋅BD⋅AC=CD⋅AE,
∴AE=,
故选C.
点睛:本题考查了菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求菱形的高,属于中考常考题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、解:∠D=∠B或∠AED=∠C.
【解析】
根据相似三角形的判定定理再补充一个相等的角即可.
【详解】
解:∵∠DAB=∠CAE
∴∠DAE=∠BAC
∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.
故答案为∠D=∠B(答案不唯一).
10、①②③
【解析】
利用平行四边形的性质结合勾股定理以及三角形面积求法分别分析得出答案.
【详解】
解:①∵在▱ABCD中,AE⊥BC,垂足为E,AE=4,BC=8,
∴AD=8,∠EAD=90°,
∴DE==,故此选项正确;
②∵S△AED=AE•AD
S四边形ABCD=AE×AD,
∴S△AED=S四边形ABCD,故此选项正确;
③∵AD∥BC,
∴∠ADE=∠DEC,
∵AB=5,AE=4,∠AEB=90°,
∴BE=3,
∵BC=8,
∴EC=CD=5,
∴∠CED=∠CDE,
∴∠ADE=∠CDE,
∴DE平分∠ADC,故此选项正确;
④当∠AED=∠ADC时,由③可得∠AED=∠EDC,
故AE∥DC,与已知AB∥DC矛盾,故此选项错误.
故答案为:①②③.
此题主要考查了平行四边形的性质以及勾股定理、三角形面积求法等知识,正确应用平行四边形的性质是解题关键.
11、 (2n-1,2(n-1)).
【解析】
首先求出B1,B2,B3的坐标,根据坐标找出规律即可解题.
【详解】
解:由直线y=x+1,知A1(0,1),即OA1=A1B1=1,
∴B1的坐标为(1,1)或[21-1,2(1-1)];
那么A2的坐标为:(1,2),即A2C1=2,
∴B2的坐标为:(1+2,2),即(3,2)或[22-1,2(2-1)];
那么A3的坐标为:(3,4),即A3C2=4,
∴B3的坐标为:(1+2+4,4),即(7,4)或[23-1,2(3-1)];
依此类推,点Bn的坐标应该为(2n-1,2(n-1)).
本题属于规律探究题,中等难度.求出点B坐标,找出规律是解题关键.
12、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
13、2
【解析】
试题解析:∵点M(a,-5)与点N(-1,b)关于x轴对称,
∴a=-1.b=5,
∴a+b=-1+5=2.
点睛:关于x轴、y轴对称的点的坐标特征:点P(a,b)关于x轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b).
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)根据直接开平方法即可求解;(2)根据因式分解即可求解.
【详解】
(1)解:
(2)解:
此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.
15、(1)详见解析;(2)58%;(3)详见解析.
【解析】
(1)根据百分比的意义以及各组的百分比的和是1即可完成表格;
(2)根据百分比的意义即可求解;
(3)根据实际情况,写出的句子只要符合题意,与家务劳动有关即可,答案不唯一.
【详解】
解:(1)一组的百分比是:;
一组的百分比是:;
一组的人数是2(人;
(2)每周做家务的时间不超过1.5小时的学生所占的百分比是:;
(3)孝敬父母,每天替父母做半小时的家务.
本题难度中等,考查统计图表的识别,要注意统计表中各部分所占百分比的和是1,各组人数的和就是样本容量.
16、(1)1(x﹣y)(a+3b);(1)(a+1)1(a﹣1)1.
【解析】
(1)两次运用提公因式法,即可得到结果;
(1)先运用平方差公式,再运用完全平方公式,即可得到结果.
【详解】
(1)1a(x﹣y)﹣6b(y﹣x)
=1a(x﹣y)+6b(x﹣y)
=1(x﹣y)(a+3b);
(1)(a1+4)1﹣16a1
=(a1+4+4a)(a1+4﹣4a)
=(a+1)1(a﹣1)1.
本题主要考查了提公因式法以及公式法的综合运用,解题时注意:有公因式时,先提出公因式,再运用公式法进行因式分解.
17、(1)0;(2)
【解析】
(1)根据二次根式的乘法公式:和合并同类二次根式法则计算即可;
(2)二次根式的乘法公式:、除法公式和合并同类二次根式法则计算即可.
【详解】
解:(1)
=
=0
(2)
=
=
=
此题考查的是二次根式的加减运算,掌握二次根式的乘法公式:、除法公式和合并同类二次根式法则是解决此题的关键.
18、(1)见解析;(2)AE=;(3)(3),理由见解析.
【解析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.
(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE= GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;
(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到 ,可知∥, 再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.
【详解】
(1)证明:∵四边形AMFN是正方形,
∴AM=AN ∠AMC=∠N=90°
∴△AMC,△AND是Rt△
∵△ABC是等边三角形
∴AB=AC
∵旋转后AB=AD
∴AC=AD
∴Rt△AMC≌Rt△AND(HL)
(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,
设AG=
则AE= GE=
易得△GBE是等腰直角三角形
∴BG=EG=
∴AB=BC=
易得∠DHF=30°
∴HD=2DF= ,HF=
∴BF=BH+HF=
∵Rt△AMC≌Rt△AND(HL)
∴易得CF=DF=
∴BC=BF-CF=
∴
∴
∴AE=
(3);
理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,
∴ ,
∴∥,
∴
∵
∴
∴,
∵
∴≌(SAS)
∴
∴
∴是等腰直角三角形
∴
∴
∴
本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.
20、1
【解析】
解:∵正n边形的一个外角的度数为10°,
∴n=310÷10=1.
故答案为:1.
21、C
【解析】
应先判断出点P的横纵坐标的符号,进而判断其所在的象限.
【详解】
解:∵点P的横坐标-2<0,纵坐标为-3<0,
∴点P(-2,-3)在第三象限.
故选:C.
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
22、
【解析】
由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.
【详解】
∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,
∴小军能一次打开该旅行箱的概率是:.
故答案是:.
解题关键是根据概率公式(如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=).
23、<k≤2.
【解析】
直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.
【详解】
∵直线y=kx+b过点N(0,-2),
∴b=-2,
∴y=kx-2.
当直线y=kx-2的图象过A点(2,3)时,
2k-2=3,k=2;
当直线y=kx-2的图象过B点(2,2)时,
k-2=2,k=2;
当直线y=kx-2的图象过C点(4,2)时,
4k-2=2,k=,
∴k的取值范围是<k≤2.
故答案为<k≤2.
本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
二、解答题(本大题共3个小题,共30分)
24、 (1)∠BAC=75°
(2)
AD=.
【解析】
试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;
(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.
(1)∠BAC=180°-60°-45°=75°;
(2)∵AD⊥BC,
∴△ADC是直角三角形,
∵∠C=45°,
∴∠DAC=45°,
∴AD=DC,
∵AC=2,
考点:本题主要考查勾股定理、三角形内角和定理
点评:解答本题的关键是根据三角形内角和定理推出AD=DC.
25、(1)△BDE的面积是28;(2);(3)9
【解析】
(1)因为DE∥AC,所以△BDE∽△BCA,由相似三角形的性质:面积比等于相似比的平方可得到△BDE的面积;
(2)若要求 的值,可由相似三角形的性质分别得到AC和DE的数量关系、EF和DE的数量关系即可;
(3)由(1)可知△BDE的面积是28,因为BD:BC=2:3,所以BD:CD=2:1,又因为三角形BDE和三角形CDE中BD和CD边上的高相等,所以S =14,进而求出四边形ACDE的面积是35和S =21,利用相似三角
【详解】
(1)∵DE∥AC,
∴△BDE∽△BCA,
∴ ,
∵BD:BC=2:3,
∴ ,
∵△ABC的面积为63,
∴△BDE的面积是28;
(2)∵DE∥AC,
∴ ,
∴AC= ED,
∵FE:ED=2:1,
∴EF=2ED,
∴ ;
(3)∵△BDE的面积是28,
∴S =14,
∴四边形ACDE的面积是35,
∴S =21,
∵DE∥AC,
∴△GEF∽△GAC,
∴ ,
∴S = ×21=9.
此题考查相似三角形的判定与性质,三角形的面积,解题关键在于得到△BDE∽△BCA
26、
【解析】
直接利用关于x轴对称点的性质得出a的值进而得出答案.
【详解】
解:点,与点关于轴对称,
.
故答案为:.
此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.
题号
一
二
三
四
五
总分
得分
时间x(小时)
划记
人数
所占百分比
0.5x≤x≤1.0
正正
14
28%
1.0≤x<1.5
正正正
15
30%
1.5≤x<2
7
2≤x<2.5
4
8%
2.5≤x<3
正
5
10%
3≤x<3.5
3
3.5≤x<4
4%
合计
50
100%
广东省广州市番禺区2025届九年级数学第一学期开学经典模拟试题【含答案】: 这是一份广东省广州市番禺区2025届九年级数学第一学期开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省东莞市信义学校2024年九上数学开学统考模拟试题【含答案】: 这是一份广东省东莞市信义学校2024年九上数学开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
北京临川学校2024年数学九上开学统考模拟试题【含答案】: 这是一份北京临川学校2024年数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。