广东省广州中学2025届九上数学开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,如果∠A+∠C=100°,则∠B的度数是( )
A.130°B.80°C.100°D.50°
2、(4分)在平面直角坐标系中,点向上平移2个单位后的对应点的坐标为( )
A.B.C.D.
3、(4分)如图,在▱ABCD中,对角线AC、BD交于点O,下列式子中不一定成立的是( )
A.AB∥CDB.OA=OCC.∠ABC+∠BCD=180°D.AB=BC
4、(4分)点(1,m)为直线上一点,则OA的长度为
A.1B.C.D.
5、(4分)15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数B.中位数C.众数D.方差
6、(4分)如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1B.2C.3D.4
7、(4分)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE,设,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )(提示:过点E、C、D作AB的垂线)
A.线段PDB.线段PCC.线段DED.线段PE
8、(4分)下列图形中,是轴对称图形,不是中心对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.
10、(4分)如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.
11、(4分)已知点P(m-3,m+1)在第二象限,则m的取值范围是_______________.
12、(4分)某公司有一名经理和10名雇员共11名员工,他们的月工资情况(单位:元)如下:30000,2350,2350,2250,2250,2250,2250,2150,2050,1950,1850.上述数据的平均数是__________,中位数是________.通过上面得到的结果不难看出:用_________(填“平均数”或“中位数”)更能准确地反映出该公司全体员工的月人均收入水平.
13、(4分)的整数部分是a,小数部分是b,则________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费.
(1)若该城市某户6月份用水18吨,该户6月份水费是多少?
(2)设某户某月用水量为x吨(x>20),应缴水费为y元,求y关于x的函数关系式.
15、(8分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
16、(8分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.
17、(10分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.
(1)求证:四边形是菱形;
(2)若,求四边形的面积.
18、(10分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).
(1)求直线l1:的函数表达式;
(2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是______.
20、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
21、(4分)一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.
22、(4分)以正方形ABCD的边AD为一边作等边△ADE,则∠AEB的度数是________.
23、(4分)当x=______时,分式的值为0.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,E是平行四边形ABCD的边BA延长线上一点,AE=AB,连结AC、DE、CE.
(1)求证:四边形ACDE为平行四边形.
(2)若AB=AC,AD=4,CE=6,求四边形ACDE的面积.
25、(10分)如图,矩形纸片ABCD中,AD=8,点E为AD上一点,将纸片沿BE折叠,使点F落到CD边上,若DF=4,求EF的长.
26、(12分)分解因式
(1)20a3-30a2
(2)25(x+y)2-9(x-y)2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质即可解答.
【详解】
解:在平行四边形ABCD中,
∠A+∠C=100°,
故∠A=∠C=50°,
且AD∥BC,
故∠B=180°-50°=130°.
故答案选A.
本题考查平行四边形性质,对边平行,熟悉掌握是解题关键.
2、B
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:把点A(﹣4,﹣3)向上平移2个单位后的对应点A1的坐标为(﹣4,﹣3+2),
即(﹣4,﹣1),
故选:B.
此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.
3、D
【解析】
根据平行四边形的性质分析即可.
【详解】
解:由平行四边形的性质可知:
平行四边形对边平行,故A一定成立,不符合题意;
平行四边形的对角线互相平分;故B一定成立,不符合题意;
平行四边形对边平行,所以邻角互补,故C一定成立,不符合题意;
平行四边形的邻边不一定相等,只有为菱形或正方形时才相等,故D不一定成立,符合题意.
故选:D.
本题主要考查了平行四边形的性质,熟练掌握平行四边形的性质是解决问题的关键.
4、C
【解析】
根据题意可以求得点A的坐标,从而可以求得OA的长.
【详解】
【∵点A(1,m)为直线y=2x-1上一点,
∴m=2×1-1,
解得,m=1,
∴点A的坐标为(1,1),
故
故选:C.
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.
5、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
7、D
【解析】
先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的取值,再结合函数图像得到结论.
【详解】
设等边三角形的边长为1,则0≤x≤1,
如图1,分别过点E,C,D作垂线,垂足分别为F,G,H,
∵点E、D分别是AC,BC边的中点,根据等边三角形的性质可得,
当x=时,线段PE有最小值;
当x=时,线段PC有最小值;
当x=时,线段PD有最小值;
又DE是△ABC的中位线为定值,
由图2可知,当x=时,函数有最小值,故这条线段为PE,
故选D.
此题主要考查函数图像,解题的关键是熟知等边三角形、三角形中位线的性质.
8、B
【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.
【详解】
A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
B选项是轴对称图形,不是中心对称图形,故本选项符合题意;
C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;
D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选B.
此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、720°
【解析】
根据多边形的外角和等于360°,可求出这个多边形的边数,进而,求出这个多边形的内角和.
【详解】
∵一个多边形的每一个外角都等于60°,
又∵多边形的外角和等于360°,
∴这个多边形的边数=360°÷60°=6,
∴这个多边形的内角和=,
故答案是:720°.
本题主要考查多边形的外角和等于360°以及多边形的内角和公式,掌握多边形的外角和等于360°是解题的关键.
10、
【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.
【详解】
解:如图,连接BF
∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.
本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.
11、﹣1<m<1
【解析】
试题分析:让点P的横坐标小于0,纵坐标大于0列式求值即可.
解:∵点P(m﹣1,m+1)在第二象限,
∴m﹣1<0,m+1>0,
解得:﹣1<m<1.故填:﹣1<m<1.
【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
12、4700 2250 中位数
【解析】
分析:
根据“平均数”、“中位数”的定义和计算方法进行计算判断即可.
详解:
(1)这组数据的平均数为:
(30000+2350+2350+2250+2250+2250+2250+2150+2050+1950+1850)÷11
=4700(元);
(2)由题中数据可知,这组数据按从大到小的顺序排列后,排在最中间的一个数是2250元,
∴这组数据的中位数是:2250;
(3)∵这组数据中多数数据更接近中位数2250,且都与平均数相差较多,
∴用“中位数”更能反映出该公司全体员工的月人均收入水平.
综上所述:本题答案为:(1)4700;(2)2250;(3)中位数.
点睛:熟记“平均数、中位数的定义和计算方法”是正确解答本题的关键.
13、2
【解析】
因为1<<2,由此得到的整数部分a,再进一步表示出其小数部分b.
【详解】
因为1<<2,
所以a=1,b=−1.
故(1+)(-1)=2,
故答案为:2.
此题考查估算无理数的大小,解题关键在于得到的整数部分a.
三、解答题(本大题共5个小题,共48分)
14、(1)该户6月份水费是45元;(2)y=3.3x-1.
【解析】
(1)每户每月用水量如果未超过20吨,按每吨2.5元收费,而该城市某户6月份用水18吨,未超过20吨,根据水费=每吨水的价格×用水量,即可得出答案;
(2)如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费,设某户某月用水量为x吨,那么超出20吨的水量为(x-20)吨,根据水费=每吨水的价格×用水量,即可得出答案.
【详解】
解:(1)根据题意:该户用水18吨,按每吨2.5元收费,
2.5×18=45(元),
答:该户6月份水费是45元;
(2)设某户某月用水量为x吨(x>20),超出20吨的水量为(x-20)吨,
则该户20吨的按每吨2.5元收费,(x-20)吨按每吨3.3元收费,
应缴水费y=2.5×20+3.3×(x-20),
整理后得:y=3.3x-1,
答:y关于x的函数关系式为y=3.3x-1.
本题考查的是一次函数的应用,理清题意,找出各数量间的数量关系,正确得出函数关系式是解题关键.
15、(1);(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.
【解析】
(1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(8,6)代入即可,从图上读出x的取值范围;药物燃烧后,设出y与x之间的解析式y=,把点(8,6)代入即可;
(2)把y=1.6代入反比例函数解析式,求出相应的x;
(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与10进行比较,大于或等于10就有效.
【详解】
解:(1)设药物燃烧时y关于x的函数关系式为y=k1x(k1>0)代入(8,6)为6=8k1
∴k1=
设药物燃烧后y关于x的函数关系式为y=(k2>0)代入(8,6)为6=,
∴k2=48
∴药物燃烧时y关于x的函数关系式为(0≤x≤8)药物燃烧后y关于x的函数关系式为(x>8)
∴
(2)结合实际,令中y≤1.6得x≥30
即从消毒开始,至少需要30分钟后生才能进入教室.
(3)把y=3代入,得:x=4
把y=3代入,得:x=16
∵16﹣4=12
所以这次消毒是有效的.
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
16、证明步骤见解析
【解析】
过E分别做CF和DC延长线的垂线,垂足分别是G,H,利用HL证明Rt△FGE≌Rt△DHE,得到∠GFE=∠EDH,再根据三角形内角和得出∠FED=∠FCD=90°,即证明.
【详解】
解:如图,过E分别做CF和DC延长线的垂线,垂足分别是G,H,
∵AC=CD,AC⊥CD,
∴∠CAD=∠CDA=∠ACB=∠BCH=45°,
∵EG⊥CF,EH⊥CH,
∴EH=EG,
∵DE=EF,
∴Rt△FGE≌Rt△DHE(HL),
∴∠GFE=∠EDH,
∵∠FME=∠DMC
∴∠FED=∠FCD=90°,
∴EF⊥ED.
本题考查了全等三角形的判定和性质,三角形内角和,中等难度,证明三角形全等是解题关键.
17、(1)详见解析;(2)
【解析】
(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.
(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.
【详解】
(1)证明:由题意可得,
,
∴,
∵,
∴,
∴,
∴,
∴,
∴四边形是平行四边形,
又∵
∴四边形是菱形;
(2)∵矩形中, ,
∴,
∴,
∴,
设,则,
∵,
∴,
解得, ,
∴,
∴四边形的面积是:.
本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.
18、(1);(2)
【解析】
(1)利用求出点B的坐标,再将点A、B的坐标代入求出答案;
(2)求出直线与直线的交点坐标即可得到答案.
【详解】
(1)解:∵ 直线l2:过点B(m,1),
∴
∴m=2,
∴B(2,1),
∵直线l1:过点A(3,0)和点B(2,1)
∴,
解得:,
∴直线l1的函数表达式为
(2)解方程组,得,
当过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,即点P在图象交点的左侧,
∴
此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P通过作垂线即可判断出点P的位置.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
利用因式分解法求出x的值,再根据等腰三角形的性质分情况讨论求解.
【详解】
解:x2-5x+4=0,
(x-1)(x-4)=0,
所以x1=1,x2=4,
当1是腰时,三角形的三边分别为1、1、4,不能组成三角形;
当4是腰时,三角形的三边分别为4、4、1,能组成三角形,周长为4+4+1=1.
故答案是:1.
本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论求解.
20、34
【解析】
试题解析:解:设这7个数的中位数是x,
根据题意可得:,
解方程可得:x=34.
考点:中位数、平均数
点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.
21、20
【解析】
根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.
【详解】
如图,
∵由图可知AC=16×1=16(海里),
AB=12×1=12(海里),
在Rt△ABC中,BC==20(海里).
故它们相距20海里.
故答案为:20
本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.
22、75˚或15˚
【解析】
解答本题时要考虑两种情况,E点在正方形内和外两种情况,即∠AEB为锐角和钝角两种情况.
【详解】
解:当点E在正方形ABCD外侧时,
∵正方形ABCD,
∴∠BAD=90°,AB=AD,
又∵△ADE是正三角形,
∴AE=AD,∠DAE=60°,
∴△ABE是等腰三角形,∠BAE=90°+60°=150°,
∴∠ABE=∠AEB=15°;
当点E在正方形ABCD内侧时,
∵正方形ABCD,
∴∠BAD=90°,AB=AD,
∵等边△AED,
∴∠EAD=60°,AD=AE=AB,
∴∠BAE=90°-60°=30°,
,
故答案为:15°或75°.
此题主要考查了正方形和等边三角形的性质,同时也利用了三角形的内角和,解题首先利用正方形和等边三角形的性质证明等腰三角形,然后利用等腰三角形的性质即可解决问题.本题要分两种情况,这是解题的关键.
23、1.
【解析】
直接利用分式的值为零则分子为零,分母不为零进而得出答案.
【详解】
解:∵分式的值为0,
∴1x-4=0且x-1≠0,
解得:x=1.
故答案为:1.
本题考查分式的值为零的条件,正确把握分式的定义是解题关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)12.
【解析】
(1)根据题意得到且,可得四边形ACDE为平行四边形;
(2)先证四边形ACDE为菱形,然后根据菱形的面积公式计算即可.
【详解】
解:(1)在中,,.
,
∵,.
四边形ACDE为平行四边形.
(2)∵,,
.
四边形ACDE为菱形.
∵,,
.
本题考查了平行四边形和菱形的判定和性质,能够熟练应用基础知识进行推理是解题关键.
25、EF的长为1.
【解析】
设AE=EF=x,则DE=8﹣x,在Rt△DEF中,根据勾股定理列方程42+(8﹣x)2=x2,解方程即可求得EF的长.
【详解】
设AE=EF=x,
∵AD=8,
∴DE=8﹣x,
∵DF=4
在Rt△DEF中,∠D=90°,
∴42+(8﹣x)2=x2,
∴x=1.
答:EF的长为1.
本题考查了矩形的性质、图形的折叠变换、勾股定理以及等知识点,利用勾股定理列出方程是解题的关键.
26、(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)
【解析】
分析:(1)利用提公因式法,找到并提取公因式10a2即可;
(2)利用平方差公式进行因式分解,然后整理化简即可.
详解:(1)解:20a3﹣30a2=10a2(2a﹣3)
(2)解:25(x+y)2﹣9(x﹣y)2
=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]
=(8x+2y)(2x+8y);
=4(4x+y)(x+4y) .
点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).
题号
一
二
三
四
五
总分
得分
广东省广州市越秀区广东实验中学2024-2025学年数学九上开学综合测试试题【含答案】: 这是一份广东省广州市越秀区广东实验中学2024-2025学年数学九上开学综合测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省广州市省实教育集团2024-2025学年九上数学开学综合测试试题【含答案】: 这是一份广东省广州市省实教育集团2024-2025学年九上数学开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省广州市东环中学2024年九上数学开学质量跟踪监视试题【含答案】: 这是一份广东省广州市东环中学2024年九上数学开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。