广东省惠州市博罗县2024年九年级数学第一学期开学质量检测试题【含答案】
展开这是一份广东省惠州市博罗县2024年九年级数学第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)要使式子有意义,则x的取值范围是( )
A.x>1B.x>﹣1C.x≥1D.x≥﹣1
2、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,∠D=120°,延长CB至点M,使得BM=BC,连接AM,则AM的长为( )
A.3.5B.C.D.
3、(4分)将一次函数y=﹣3x﹣2的图象向上平移4个单位长度后,图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2 的大小关系是
A.y1>y2B.y1=y2C.y1
A.B.C.D.
6、(4分)如图,在平行四边形ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )
A.AB∥CDB.AC=BDC.AB=CDD.OA=OC
7、(4分)一元一次不等式组的解集在数轴上表示为( ).
A.B.
C.D.
8、(4分) “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若点在一次函数的图像上,则代数式的值________。
10、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.
11、(4分)每本书的厚度为0.62cm,把这些书摞在一起总厚度h(单位:cm)随书的本数n的变化而变化,请写出h关于n的函数解析式_____.
12、(4分)二次根式中字母 a 的取值范围是______.
13、(4分)函数y=的自变量x的取值范围为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:
(2)计算:(2+)(2﹣)+÷+
(3)在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上且DF=BE,连接AF,BF.
①求证:四边形BFDE是矩形;
②若CF=6,BF=8,AF平分∠DAB,则DF= .
15、(8分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
16、(8分)如图,已知平行四边形ABCD延长BA到点E,延长DC到点E,使得AE=CF,连结EF,分别交AD、BC于点M、N,连结BM,DN.
(1)求证:AM=CN;
(2)连结DE,若BE=DE,则四边形BMDN是什么特殊的四边形?并说明理由.
17、(10分)已知矩形中,两条对角线的交点为.
(1)如图1,若点是上的一个动点,过点作于点, 于点,于点,试证明:;
(2)如图②,若点在的延长线上,其它条件和(1)相同,则三者之间具有怎样的数量关系,请写出你的结论并证明.
18、(10分)先化简,再求值:(x+2+)÷,其中x=
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若A(﹣1,y1)、B(﹣1,y1)在y=图象上,则y1、y1大小关系是y1_____y1.
20、(4分)把一元二次方程2x2﹣x﹣1=0用配方法配成a(x﹣h)2+k=0的形式(a,h,k均为常数),则h和k的值分别为_____
21、(4分)如图,在矩形ABCD中,DE⊥AC,∠CDE=2∠ADE,那么∠BDC的度数是________.
22、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.
23、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:
假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4 ,通过计算说明谁应当选为优秀学生干部。
25、(10分)如图,在平面直角坐标系中,已知A(-3,-4),B(0,-2).
(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;
(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.
26、(12分)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于1,可得答案.
【详解】
要使有意义,得
x-1≥1.
解得x≥1,
故选C.
考点:二次根式有意义的条件.
2、B
【解析】
作AN⊥BM于N,求出∠BAN=30°,由含30°角的直角三角形的性质得出BN、AN的长,由勾股定理即可得出答案.
【详解】
作AN⊥BM于N,如图所示:
则∠ANB=∠ANM=90°,
∵四边形ABCD是平行四边形,
∴BC=AD=6,∠ABC=∠D=120°,
∴∠ABN=60°,
∴∠BAN=30°,
∴BN=AB=2,AN=,
∵BM=BC=3,
∴MN=BM-BN=1,
∴AM=,
故选:B.
本题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理等知识;熟练掌握平行四边形的性质和含30°角的直角三角形的性质是解题的关键.
3、C
【解析】
画出平移前后的函数图像,即可直观的确定答案.
【详解】
解:如图:平移后函数图像不经过第三象限,即答案为C.
本题考查了函数图像的平移,作图法是一种比较好的解题方法.
4、A
【解析】
先求出y1,y1的值,再比较其大小即可.
【详解】
解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,
∴y1=11+1=14,y1=−6+1=−4,
∴y1>y1.
故选:A.
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
5、D
【解析】
根据三点共线可得,再根据等腰直角三角板的性质得,即可求出旋转角度的大小.
【详解】
∵三点共线
∴
∵这是一块等腰直角的三角板
∴
∴
故旋转角度的大小为135°
故答案为:D.
本题考查了三角板的旋转问题,掌握等腰直角三角板的性质、旋转的性质是解题的关键.
6、B
【解析】
试题分析:根据平行四边形的性质推出即可.
解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,OA=OC,
但是AC和BD不一定相等,
故选B.
7、A
【解析】
根据不等式解集的表示方法即可判断.
【详解】
解:
解不等式①得:x>-1,
解不等式②得:x≤2,
∴不等式组的解集是-1<x≤2,
表示在数轴上,如图所示:
.
故选:A.
此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
8、D
【解析】
分析:根据图象得出相关信息,并对各选项一一进行判断即可.
详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;
乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;
兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;
在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.
故选D.
点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10
【解析】
先把点带入一次函数求出的值,再代入代数式进行计算即可.
【详解】
∵点在一次函数上,
∴,即,
∴原式===10.
此题主要考查了一次函数图像上点的坐标特点以及代数式求值的问题,关键是掌握凡是函数图象经过的点必能满足解析式,并且熟练进行有理数的混合计算.
10、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
.
故答案为:.
本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
11、h=0.62n
【解析】
依据这些书摞在一起总厚度()与书的本数成正比,即可得到函数解析式.
【详解】
每本书的厚度为,
这些书摞在一起总厚度()与书的本数的函数解析式为.
故答案为:.
本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.
12、.
【解析】
运用二次根式中的被开方数的非负性进行求解即可,即有意义,则a≥0.
【详解】
解:由题意得2a+5≥0,解得:.
故答案为.
本题考查了二次根式的意义和性质,对于二次根式而言,关键是要注意两个非负性:一是a≥0,二是≥0;在各地试卷中是高频考点.
13、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
三、解答题(本大题共5个小题,共48分)
14、(1)7(2)(3)①详见解析;②10
【解析】
(1)按顺序先利用完全平方公式展开,进行二次根式的化简,进行平方运算,然后再按运算顺序进行计算即可;
(2)按顺序先利用平方差公式进行展开,进行二次根式的除法,进行负指数幂的运算,然后再按运算顺序进行计算即可;
(3)①先证明四边形DEBF是平行四边形,然后再根据有一个角是直角的平行四边形是矩形即可得结论;
②先利用勾股定理求出BC长,再根据平行四边形的性质可得AD长,再证明DF=AD即可得.
【详解】
(1)原式=2+2+1-2+4
=7;
(2)原式=4-3++4
=5+=;
(3)①∵四边形ABCD是平行四边形,
∴AB//CD,即BE//DF,
又∵DF=BE,
∴四边形DEBF是平行四边,
又∵DE⊥AB,
∴∠DEB=90°,
∴平行四边形BFDE是矩形;
②∵四边形BFDE是矩形,
∴∠BFD=90°,
∴∠BFC=90°,
∴BC==10,
∵四边形ABCD是平行四边形,
∴AD=BC=10,AB//CD,
∴∠FAB=∠DFA,
∵∠DAF=∠FAB,
∴∠DAF=∠DFA,
∴DF=AD=10.
本题考查了二次根式的混合运算,平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟练掌握相关知识是解题的关键.
15、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
16、(1)见解析;(2)四边形BMDN是菱形,理由见解析.
【解析】
(1)由题意可证△AEM≌△FNC,可得结论.
(2)由题意可证四边形BMDN是平行四边形,由题意可得BE=DE=DF,即可证∠BEM=∠DEF,即可证△BEM≌△DEM,可得BM=DM,即可得结论.
【详解】
(1)∵四边形ABCD是平行四边形
∴AB∥CD,AD∥BC,∠BAD=∠BCD
∴∠E=∠F,∠EAM=∠FCN
∵∠E=∠F,∠EAM=∠FCN,AE=CF
∴△AEM≌△CFN
∴AM=CN
(2)菱形
如图
∵AD=BC,AM=CN
∴MD=BN且AD∥BC
∴四边形BMDN是平行四边形
∵AB=CD,AE=CF
∴BE=DF,且BE=DE
∴DE=DF
∴∠DEF=∠DFE
且∠BEF=∠DFE
∴∠BEF=∠DEF,且BE=DE,EM=EM
∴△BEM≌△EMD
∴BM=DM
∵四边形BMDN是平行四边形
∴四边形BMDN是菱形.
本题考查了平行四边形的性质,全等三角形的性质和判定,菱形的判定,灵活运用这些性质解决问题是本题的关键.
17、 (1)证明见解析;(2) ,证明见解析
【解析】
(1)过作于点,根据矩形的判定和性质、全等三角形的判定和性质进行推导即可得证结论;
(2) 先猜想结论为,过作于点,根据矩形的判定和性质、角平分线的性质进行推导即可得证猜想.
【详解】
解:证明:(1)过作于点,如图:
∵,
∴四边形是矩形
∴,
∴
∵四边形是矩形
∴,且互相平分
∴
∴
∵,
∴
∵
∴
∴
∴,即.
(2) 结论:
证明:过作于点,如图:
同理可证,
∵,
∴
∴,即.
本题考查了矩形的判定和性质、全等三角形的判定和性质、角平分线的性质、线段.的和差等知识点,适当添加辅助线是解决问题的关键.
18、,1-
【解析】
首先计算括号里面的加减,然后再计算除法,化简后再代入x的值即可.
【详解】
解:原式=×,
=•
=.
当x=-3时,原式===1-.
此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、>
【解析】
根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.
【详解】
∵y=图象在一、三象限,在每个象限内y随x的增大而减小,
A(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,
∵﹣1<﹣1,
∴y1>y1,
故答案为:>.
考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.
20、
【解析】
先将方程变形,利用完全平方公式进行配方.
【详解】
解:2x2﹣x﹣1=1,
x2﹣x﹣=1,
x2﹣x+﹣﹣=1,
(x﹣)2﹣=1.
∴h=,k=﹣.
故答案是:,﹣.
考查了配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
21、30°
【解析】
分析:由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
详解:∵四边形ABCD是矩形,
∴∠ADC=90°,OA=OD,
∴∠ODA=∠DAE,
∵∠CDE =2∠ADE,
∴∠ADE=90°÷3=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为:30°.
点睛:本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
22、8.
【解析】
直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.
【详解】
如图所示:
∵在菱形ABCD中,∠BAD=60°,其所对的对角线长为4,
∴可得AD=AB,故△ABD是等边三角形,
则AB=AD=4,
故BO=DO=2,
则AO=,
故AC=4,
则菱形ABCD的面积是:×4×4=8.
故答案为:8.
此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.
23、6
【解析】
由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.
【详解】
解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.
本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、平均数分别为26.2 ,25.8 ,25.4 ,班长应当选.
【解析】
根据思想表现、学习成绩、工作能力这三方面的不同权重,分别计算三人的加权平均分即可.
【详解】
解:根据思想表现、学习成绩、工作能力这三方面的重要比为3 ∶3 ∶4,可得思想表现、学习成绩、工作能力这三方面的权重分别是0.3 ,0.3,0.4;
则班长的最终成绩为:;
学习委员的最终成绩为:;
团支部书记的最终成绩为:;
∵26.2 >25.8 >25.4
∴班长的最终成绩最高,
∴班长当选.
故答案为:平均数分别为26.2 ,25.8 ,25.4 ,班长应当选.
本题考查加权平均数的计算,比较简单,熟记加权平均数的计算方法是解题关键.
25、(1)画图见解析,A1(3,4),B1(0,2);(2)以A、B、A1、B1为顶点的四边形为平行四边形,理由见解析.
【解析】
(1)延长AO至A1,A1O=AO, 延长BO至B1,B1O=AO,顺次连接A1B1O,再根据关于原点对称的点的坐标关系,写出A1,B1的坐标.(2)由两组对边相等,可知四边形是平行四边形.
【详解】
解:(1)如图图所示,△OA1B1即为所求,
A1(3,4)、B1(0,2);
(2)由图可知,OB=OB1=2、OA=OA1==5,
∴四边形ABA1B1是平行四边形.
本题考核知识点:图形旋转,中心对称和点的坐标,平行四边形判定. 解题关键点:熟记关于原点对称的点的坐标关系,掌握平行四边形的判定定理.
26、(1)D(4,7)(2)y=(3)详见解析
【解析】
试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;
(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;
(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C的对称点时,△PCD为等腰三角形,然后求解即可.
试题解析:(1)x2﹣7x+12=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
过D作DE⊥y于点E,
∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∠DAE+∠OAB=90°,
∠ABO+∠OAB=90°,
∴∠ABO=∠DAE,
∵DE⊥AE,
∴∠AED=90°=∠AOB,
∵DE⊥AE
∴∠AED=90°=∠AOB,
∴△DAE≌△ABO(AAS),
∴DE=OA=4,AE=OB=3,
∴OE=7,
∴D(4,7);
(2)过点C作CM⊥x轴于点M,
同上可证得△BCM≌△ABO,
∴CM=OB=3,BM=OA=4,
∴OM=7,
∴C(7,3),
设直线BC的解析式为y=kx+b(k≠0,k、b为常数),
代入B(3,0),C(7,3)得,,
解得,
∴y=x﹣;
(3)存在.
点P与点B重合时,P1(3,0),
点P与点B关于点C对称时,P2(11,6).
考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份广东省2025届九年级数学第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省2024年九年级数学第一学期开学质量检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届广东省惠州市名校数学九年级第一学期开学达标检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。