广东省茂名市高州2024年数学九年级第一学期开学复习检测试题【含答案】
展开
这是一份广东省茂名市高州2024年数学九年级第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是( )
A.k≤2B.k≥C.0<k<D.≤k≤2
2、(4分)用配方法解方程,配方正确的是()
A.B.C.D.
3、(4分)下列各式是最简二次根式的是( )
A.B.C.D.
4、(4分)在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则m的值可以是( )
A.0B.1C.2D.3
5、(4分)如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为( )
A.6cmB.12cmC.18cmD.24cm
6、(4分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54°B.64°C.74°D.26°
7、(4分) “单词的记忆效率“是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.如图描述了某次单词复习中小华,小红小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )
A.小华B.小红C.小刚D.小强
8、(4分)下列命题正确的个数是( )
(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=与y=x-1的图象的交点坐标为(x0,y0),则的值为_____________.
10、(4分)若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为
11、(4分)如图,购买“黄金1号”王米种子,所付款金额y元与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则购买1千克“黄金1号”玉米种子需付款___元,购买4千克“黄金1号”玉米种子需___元.
12、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.
13、(4分)二次根式中,x的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
15、(8分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:
;
反之,;
∴;
∴.
仿上例,求:
(1);
(2)若,则、与、的关系是什么?并说明理由.
16、(8分)实践与探究
如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。
(1)求直线的解析式;
(2)若点是轴上一点,且的面积是面积的,求点的坐标;
17、(10分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.
(1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.
(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.
①求证:CD=2AE.
②若AE+CD=DE,求k.
③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
18、(10分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:
(1)扇形统计图中a的值为 ;
(2)补全频数分布直方图;
(3)在这次抽样调查中,众数是 天,中位数是 天;
(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)平行四边形ABCD的对角线AC、BD相交于点O,AB=6,BC=8,若△AOB是等腰三角形,则平行四边形ABCD的面积等于_______________________.
20、(4分)如果关于x的不等式组的解集是,那么m=___
21、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
22、(4分)比较大小:__________-1.(填“”、“”或“”)
23、(4分)甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,则成绩比较稳定的是 (填“甲”或“乙”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在平面直角坐标系 中,直线 与 轴,轴分别交于点 ,点 。
(1)求点和点的坐标;
(2)若点 在 轴上,且 求点的坐标。
(3)在轴是否存在点 ,使三角形 是等腰三角形,若存在。请求出点坐标,若不存在,请说明理由。
25、(10分)已知一次函数.
(1)若这个函数的图像经过原点,求a的值.
(2)若这个函数的图像经过一、三、四象限,求a的取值范围.
26、(12分)求证:等腰三角形的底角必为锐角. (请根据题意画出图形,写出已知、求证,并证明)
已知:
求证:
证明:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.
【详解】
解:
直线与正方形有公共点,
直线在过点和点两直线之间之间,
如图,可知,,
当直线过点时,代入可得,解得,
当直线过点时,代入可得,解得,
的取值范围为:,
故选:.
本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.
2、C
【解析】
把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
【详解】
解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,
方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,
配方得(x-1)2=1.
故选C.
本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
3、C
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
解:A、不是最简二次根式,错误;
B、不是最简二次根式,错误;
C、是最简二次根式,正确;
D、不是最简二次根式,错误;
故选:C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
4、A
【解析】
根据反比例函数的性质,可得出,从而得出的取值范围.
【详解】
解:反比例函数的图象的每一条曲线上,都随的增大而减小,
,
解得,则m可以是0.
故选A.
本题考查了反比例函数的性质,当时,都随的增大而减小;当时,都随的增大而增大.
5、C
【解析】
设屏幕上图形的高度xcm,为根据相似三角形对应高的比等于相似比可得 ,解得x=18cm,即屏幕上图形的高度18cm,故选C.
6、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
7、C
【解析】
根据小华,小红,小刚和小强四位同学的单词记忆效率y与复习的单词个数x的情况的图表,回答问题即可.
【详解】
解:由图可得:小华同学的单词的记忆效率最高,但复习个数最少,小强同学的复习个数最多,但记忆效率最低,小红和小刚两位同学的记忆效率基本相同,但是小刚同学复习个数较多,所以这四位同学在这次单词复习中正确默写出的单词个数最多的是小刚.
故选:C.
本题考查函数的图象,正确理解题目的意思是解题的关键.
8、C
【解析】
根据完全平方式、正六边形、平行四边形的判定判断即可
【详解】
(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;
(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;
(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;
(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;
故选C
此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
解 ,得 或 .
当时, ;
当时,;
所以的值为
10、1.
【解析】
根据直角三角形斜边中线的性质即可得.
【详解】
已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.
故答案为:1.
11、5 1.
【解析】
由图象可求出当0≤x≤2时,y与x的函数关系式为y=5x,当x>2时,y与x的函数关系式为y=4x+2,然后根据所求解析式分别求出当x=1和x=4时y的值即可.
【详解】
解:当0≤x≤2时,设y与x的函数关系式为y=kx,
2k=10,得k=5,
∴当0≤x≤2时,y与x的函数关系式为y=5x,
当x=1时,y=5×1=5,
当x>2时,设y与x的函数关系式为y=ax+b,
,得 ,
即当x>2时,y与x的函数关系式为y=4x+2,
当x=4时,y=4×4+2=1,
故答案为:5,1.
一次函数在实际生活中的应用是本题的考点,根据图象求出函数解析式是解题的关键.
12、3
【解析】
∵BE平分∠ABC,
∴∠ABE=∠CBE,
又∵∠ABE和∠CEB为内错角,
∴∠ABE=∠CEB,
∴∠CEB=∠CBE,
∴CE=BC=AD=6㎝,
∵DC=AB=9㎝,
∴DE=3cm.
13、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
15、(1);(2),.理由见解析.
【解析】
(1)根据阅读材料即可求解;
(2)根据阅读材料两边同时平方即可求解.
【详解】
(1)
;
(2),;
∵,∴,
∴,
∴,.
此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则.
16、(1);(2)点的坐标为或
【解析】
(1)先求出C点坐标,再利用待定系数法确定函数关系式即可求解;
(2)先求出A点坐标,再过点作轴,垂足为点;过点作轴,垂足为点,设点的坐标为,根据三角形的面积即可列出式子求解;
【详解】
解:(1)∵点在上,且横坐标是1,
∴把代入中,得,
∴点的坐标为,
设直线的解析式为,将点的坐标代入得
解得
∴直线的解析式为;
(2)∵点是直线与轴的交点,
∴把代入中得,,∴点坐标为,
过点作轴,垂足为点;过点作轴,垂足为点,
由点的坐标为可得,,
设点的坐标为,
依题意得,,
即,
解得,,
∴点的坐标为或;
此题主要考查一次函数的图像,解题的关键是熟知一次函数的的性质及三角形的面积求解.
17、(1)OF =4;(2)①证明见解析;② k=;③96-16或36-4.
【解析】
分析(1)由y=经过点B (2,4).,求出k的值,再利用F在直线y = x,求出m的值,最后利用勾股定理求解即可;(2) ①利用反比例函数k的几何意义可求解; ②Rt△EBD中,分别用n表示出BD、BE、DE,再利用勾股定理解答即可; ③分三种情况讨论即可:OE=OD;
OE=DE;OD=DE.
详解:(1)∵F在直线y=x上
∴设F(m,m)
作FM⊥x轴
∴FM=OM=m
∵y=经过点B (2,4).
∴k=8
∴
∴
∴
∴OF =4;
(2)①∵函数 的图象经过点D,E
∴,∵ OC=2,OA=4
∴CO=2AE
②由①得:CD=2AE
∴可设:CD=2n,AE=n
∴DE=CD+AE=3n
BD=4-2n, BE=2-n
在Rt△EBD,由勾股定理得:
∴
解得
③CD=2c,AE=c
情况一:若OD=DE
∴
∴
∴
情况二:若OE=DE
∴
∴
情况三:OE=OD 不存在.
点睛:本题考查了反比例函数的性质,利用反比例函数的解析式求点的坐标,利用勾股定理得到方程,进而求出线段的长,注意解题时分类讨论的思想应用.
18、(1)20;(2)见解析;(3)4,4;(4)4(天).
【解析】
(1)由百分比之和为1可得;
(2)先根据2天的人数及其所占百分比可得总人数,再用总人数乘以对应百分比分别求得3、5、7天的人数即可补全图形;
(3)根据众数和中位数的定义求解可得;
(4)根据加权平均数和样本估计总体思想求解可得.
【详解】
解:(1)a=100﹣(15+20+30+10+5)=20,
故答案为20;
(2)∵被调查的总人数为30÷15%=200人,
∴3天的人数为200×20%=40人,
5天的人数为200×20%=40人,
7天的人数为200×5%=10人,
补全图形如下:
(3)众数是4天、中位数为=4天,
故答案为4、4;
(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或2
【解析】
分三种情形分别讨论求解即可解决问题;
【详解】
情形1:如图当OA=OB时,∵四边形ABCD是平行四边形,
∴AC=2OA,BD=2OB,
∴AC=BD,
∴四边形ABCD是矩形,
∴四边形ABCD的面积=1.
情形2:当AB=AO=OC=6时,作AH⊥BC于H.设HC=x.
∵AH2=AB2-BH2=AC2-CH2,
∴62-(x-8)2=122-x2,
∴x=,
∴AH=,
∴四边形ABCD的面积=8×=2.
情形3:当AB=OB时,四边形ABCD的面积与情形2相同.
综上所述,四边形ABCD的面积为1或2.
故答案为1或2.
本题考查平行四边形的性质、等腰三角形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
20、-3
【解析】
根据“同大取大”的法则列出关于m的不等式,求出m的取值范围即可.
【详解】
解:
∵m+2>m-1
又∵不等式组的解集是x>-1,
∴m+2=-1,
∴m=-3,
故答案为:-3.
本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则解答即可.
21、∠B=∠1或
【解析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵,∠A=∠A,
∴△ADE∽△ABC;
故答案为∠B=∠1或
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
22、
【解析】
先由,得到>,再利用两个负实数绝对值大的反而小得到结论.
【详解】
解:∵>,
∴,
∴>.
故答案为:
本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.
23、甲
【解析】
试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,
∵,∴成绩比较稳定的是甲.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3)在 轴上存在点 使为等腰三角形
【解析】
(1)分别代入y=0,x=0,求出与之对应的x,y值,进而可得出点A,B的坐标;
(2)由三角形的面积公式结合S△BOP= S△AOB,可得出OP=OA,进而可得出点P的坐标;
(3)由OA,OB的长可求出AB的长,分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质可求出点M的坐标.
【详解】
解:(1)当y=0时,-2x+4=0,解得:x=2,
∴点A的坐标为(2,0);
当x=0时,y=-2x+4=4,
∴点B的坐标为(0,4).
(2))∵点P在x轴上,且S△BOP= S△AOB,
∴OP=OA=1,
∴点P的坐标为(-1,0)或(1,0).
(3))∵OB=4,OA=2,
∴AB=
分三种情况考虑(如图所示):
①当AB=AM时,OM=OB=4,
∴点M1的坐标为(0,-4);
②当BA=BM时,BM=2,
∴点M2的坐标为(0,4+2 ),点M3的坐标为(0,4-2);
③当MA=MB时,设OM=a,则BM=AM=4-a,
∴AM2=OM2+OA2,即(4-a)2=a2+22,
∴a=,
∴点M4的坐标为(0,).
综上所述:在y轴上存在点M,使三角形MAB是等腰三角形,点M坐标为(0,-4),(0,4+2),(0,4-2)和(0,).
本题考查一次函数图象上点的坐标特征、三角形的面积、勾股定理以及等腰三角形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用两三角形面积间的关系,找出OP的长;(3)分AB=AM,BA=BM,MA=MB三种情况,利用等腰三角形的性质求出点M的坐标.
25、(1)2;(2)
【解析】
(1)y=kx+b经过原点则b=0,据此求解;
(2)y=kx+b的图象经过一、三、四象限,k>0,b<0,据此列出不等式组求解即可.
【详解】
解:(1)由题意得,
∴.
(2)由题意得
解得:
∴a的取值范围是:
考查了一次函数的性质,了解一次函数的性质是解答本题的关键,难度不大.
26、详见解析
【解析】
根据题意写出已知、求证,假设∠B=∠C≥90°,计算得出∠A+∠B+∠C>180°,与三角形内角和定理矛盾,从而得出假设不成立即可.
【详解】
解:求证:等腰三角形的底角必为锐角.
已知:如图所示,△ABC中,AB=AC.
求证:∠B=∠C0°
∴∠A+∠B+∠C>180°
与三角形内角和定理∠A+∠B+∠C=180°矛盾
∴假设不成立
∴等腰△ABC中∠B=∠C
相关试卷
这是一份广东省茂名市十校联考2024年数学九年级第一学期开学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省茂名市高州2024年数学九年级第一学期开学复习检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省高州市2024-2025学年九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。